PREPUBLICATION COPY

Urban Stormwater Management in the United States

ADVANCE COPY

NOT FOR PUBLIC RELEASE BEFORE

Wednesday, October 15, 2008 11:00 a.m. EDT

PLEASE CITE AS A REPORT OF THE **NATIONAL RESEARCH COUNCIL**

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

Contents

Summary

1 Introduction	11
Urbanization and Its Impacts	
What's Wrong With the Nation's Waters?	
Why Is It So Hard to Reduce the Impacts of Stormwater?	22
Impetus for the Study and Report Roadmap	29
References	32
	20
2 The Challenge of Regulating Stormwater	
Federal Regulatory Framework for Stormwater	
EPA Stormwater Program	
Local Codes and Ordinances that Affect Stormwater Management	
Limitations of Federal Stormwater Program	
Conclusions and Recommendations	
References	103
3 Hydrologic, Geomorphic, and Biological Effects of Urbanization on Watersheds	109
Land-Use Changes	
Hydrologic and Geomorphic Changes	
Pollutant Loading in Stormwater	
Other Sources of Urban Runoff Discharges	
Biological Responses to Urbanization	
Conclusions and Recommendations	
References	
	210
4 Monitoring and Modeling	
Monitoring of MS4s	
Monitoring of Industries Including Construction	
Modeling to Linking Sources of Pollution to Effects in Receiving Waters	
Conclusions and Recommendations	
References	
5 Stormwater Management Approaches	
Historical Perspectives on Stormwater Control Measures	
Review of Stormwater Control Measures	
Designing Systems of Stormwater Control Measures on a Watershed Scale	
Cost, Finance Options, and Incentives	
Challenges to Implementation of Watershed-Based Management and Stormwater C	
Measures	
Conclusions and Recommendations	

Contents

References	
	207
6 Innovative Stormwater Management and Regulatory Permitting	
Watershed Permitting Framework for Managing Stormwater	
Enhancement of Existing Permitting Basis	
Conclusions and Recommendations	
References	455

Appendixes

Acronyms	463
Glossary	465
• •	
Biographical Information for the Committee on Reducing Stormwater Discharge	
Contributions to Water Pollution	509
	Glossary Summary of Responses from State Stormwater Coordinators Select Stormwater Model Descriptions and Application Biographical Information for the Committee on Reducing Stormwater Discharge

xii

Summary

Urbanization is the changing of land use from forest or agricultural uses to suburban and urban areas. This conversion is proceeding in the United States at an unprecedented pace, and the majority of the country's population now lives in suburban and urban areas. The creation of impervious surfaces that accompanies urbanization profoundly affects how water moves both above and below ground during and following storm events, the quality of that stormwater, and the ultimate condition of nearby rivers, lakes, and estuaries.

The National Pollutant Discharge Elimination System (NPDES) program under the Clean Water Act (CWA) is the primary federal vehicle to regulate the quality of the nation's waterbodies. This program was initially developed to reduce pollutants from industrial process wastewater and municipal sewage discharges. These point sources were known to be responsible for poor, often drastically degraded conditions in receiving waterbodies. They were easily regulated because they emanated from identifiable locations, such as pipe outfalls. To address the role of stormwater in causing or contributing to water quality impairments, in 1987 Congress wrote Section 402(p) of the CWA, bringing stormwater control into the NPDES program, and in 1990 the U.S. Environmental Protection Agency (EPA) issued the Phase I Stormwater Rules. These rules require NPDES permits for operators of municipal separate storm sewer systems (MS4s) serving populations over 100,000 and for runoff associated with industry, including construction sites five acres and larger. In 1999 EPA issued the Phase II Stormwater Rule to expand the requirements to small MS4s and construction sites between one and five acres in size.

With the addition of these regulated entities, the overall NPDES program has grown by almost an order of magnitude. EPA estimates that the total number of permittees under the stormwater program at any time exceeds half a million. For comparison, there are fewer than 100,000 non-stormwater (meaning wastewater) permittees covered by the NPDES program. To manage the large number of permittees, the stormwater program relies heavily on the use of general permits to control industrial, construction, and Phase II MS4 discharges. These are usually statewide, one-size-fits-all permits in which general provisions are stipulated.

To comply with the CWA regulations, industrial and construction permittees must create and implement a stormwater pollution prevention plan, and MS4 permittees must implement a stormwater management plan. These plans documents the stormwater control measures (SCMs) (sometimes known as best management practices or BMPs) that will be used to prevent stormwater emanating from these sources from degrading nearby waterbodies. These SCMs range from structural methods such as detention ponds and bioswales to nonstructural methods such as designing new development to reduce the percentage of impervious surfaces.

A number of problems with the stormwater program as it is currently implemented have been recognized. First, there is limited information available on the effectiveness and longevity of many SCMs, thereby contributing to uncertainty in their performance. Second, the requirements for monitoring vary depending on the regulating entity and the type of activity. For example, a subset of industrial facilities must conduct "benchmark monitoring" and the results often exceed the values established by EPA or the states, but it is unclear whether these exceedances provide useful indicators of potential water quality problems. Finally, state and local stormwater programs are plagued by a lack of resources to review stormwater pollution prevention plans and conduct regular compliance inspections. For all these reasons, the stormwater program has suffered from poor accountability and uncertain effectiveness at improving the quality of the nation's waters.

In light of these challenges, EPA requested the advice of the National Research Council's Water Science and Technology Board on the federal stormwater program, considering all entities regulated under the program (i.e., municipal, industrial, and construction). The following statement of task guided the work of the committee:

- (1) Clarify the mechanisms by which pollutants in stormwater discharges affect ambient water quality criteria and define the elements of a "protocol" to link pollutants in stormwater discharges to ambient water quality criteria.
- (2) Consider how useful monitoring is for both determining the potential of a discharge to contribute to a water quality standards violation and for determining the adequacy of stormwater pollution prevention plans. What specific parameters should be monitored and when and where? What effluent limits and benchmarks are needed to ensure that the discharge does not cause or contribute to a water quality standards violation?
- (3) Assess and evaluate the relationship between different levels of stormwater pollution prevention plan implementation and in-stream water quality, considering a broad suite of SCMs.
- (4) Make recommendations for how to best stipulate provisions in stormwater permits to ensure that discharges will not cause or contribute to exceedances of water quality standards. This should be done in the context of general permits. As a part of this task, the committee will consider currently available information on permit and program compliance.
- (5) Assess the design of the stormwater permitting program implemented under the CWA.

Chapter 2 of this report presents the regulatory history of stormwater control in the United States, focusing on relevant portions of the CWA and the federal and state regulations that have been created to implement the Act. Chapter 3 reviews the scientific aspects of stormwater, including sources of pollutants in stormwater, how stormwater moves across the land surface, and its impacts on receiving waters. Chapter 4 evaluates the current industrial and MS4 monitoring requirements, and it considers the multitude of models available for linking stormwater discharges to ambient water quality. Chapter 5 considers the vast suite of both structural and nonstructural measures designed to control stormwater and reduce its pollutant loading to waterbodies. In Chapter 6, the limitations and possibilities associated with a new regulatory approach are explored, as are those of a more traditional but enhanced scheme. This new approach, which rests on the broad foundation of correlative studies demonstrating the effects of urbanization on aquatic ecosystems, would reduce the impact of stormwater on receiving waters beyond any efforts currently in widespread practice.

THE CHALLENGE OF REGULATING STORMWATER

Although stormwater has been long recognized as contributing to water quality impairment, the creation of federal regulations to deal with stormwater quality has occurred only in the last 20 years. Because this longstanding environmental problem is being addressed so late

in the development and management of urban areas, the laws that mandate better stormwater control are generally incomplete and are often in conflict with state and local rules that have primarily stressed the flood control aspects of stormwater management (i.e., moving water away from structures and cities as fast as possible). Many prior investigators have observed that stormwater discharges would ideally be regulated through direct controls on land use, strict limits on both the quantity and quality of stormwater runoff into surface waters, and rigorous monitoring of adjacent waterbodies to ensure that they are not degraded by stormwater discharges. Future land-use development would be controlled to minimize stormwater discharges, and impervious cover and volumetric restrictions would serve as proxies for stormwater loading from many of these developments. Products that contribute pollutants through stormwater—like de-icing materials, fertilizers, and vehicular exhaust—would be regulated at a national level to ensure that the most environmentally benign materials are used.

Presently, however, the regulation of stormwater is hampered by its association with a statute that focuses primarily on specific pollutants and ignores the volume of discharges. Also, most stormwater discharges are regulated on an individualized basis without accounting for the cumulative contributions from multiple sources in the same watershed. Perhaps most problematic is that the requirements governing stormwater dischargers leave a great deal of discretion to the dischargers themselves in developing stormwater pollution prevention plans and self-monitoring to ensure compliance. These problems are exacerbated by the fact that the dual responsibilities of land-use planning and stormwater management within local governments are frequently decoupled.

EPA's current approach to regulating stormwater is unlikely to produce an accurate or complete picture of the extent of the problem, nor is it likely to adequately control stormwater's contribution to waterbody impairment. The lack of rigorous end-of-pipe monitoring, coupled with EPA's failure to use flow or alternative measures for regulating stormwater, make it difficult for EPA to develop enforceable requirements for stormwater dischargers. Instead, the stormwater permits leave a great deal of discretion to the regulated community to set their own standards and to self-monitor. Current statistics on the states' implementation of the stormwater program, discharger compliance with stormwater requirements, and the ability of states and EPA to incorporate stormwater permits with Total Maximum Daily Loads are uniformly discouraging. Radical changes to the current regulatory program (see Chapter 6) appear necessary to provide meaningful regulation of stormwater dischargers in the future.

Flow and related parameters like impervious cover should be considered for use as proxies for stormwater pollutant loading. These analogs for the traditional focus on the "discharge" of "pollutants" have great potential as a federal stormwater management tool because they provide specific and measurable targets, while at the same time they focus regulators on water degradation resulting from the increased volume as well as increased pollutant loadings in stormwater runoff. Without these more easily measured parameters for evaluating the contribution of various stormwater sources, regulators will continue to struggle with enormously expensive and potentially technically impossible attempts to determine the pollutant loading from individual dischargers or will rely too heavily on unaudited and largely ineffective self-reporting, self-policing, and paperwork enforcement.

EPA should engage in much more vigilant regulatory oversight in the national licensing of products that contribute significantly to stormwater pollution. De-icing chemicals, materials used in brake linings, motor fuels, asphalt sealants, fertilizers, and a variety of other products should be examined for their potential contamination of stormwater. Currently, EPA does not apparently utilize its existing licensing authority to regulate these products in a way that minimizes their contribution to stormwater contamination. States can also enact restrictions on or tax the application of pesticides or other particularly toxic products. Even local efforts could ultimately help motivate broader scale, federal restrictions on particular products.

The federal government should provide more financial support to state and local efforts to regulate stormwater. State and local governments do not have adequate financial support to implement the stormwater program in a rigorous way. At the very least, Congress should provide states with financial support for engaging in more meaningful regulation of stormwater discharges. EPA should also reassess its allocation of funds within the NPDES program. The agency has traditionally directed funds to focus on the reissuance of NPDES wastewater permits, while the present need is to advance the NPDES stormwater program because NPDES stormwater permittees outnumber wastewater permittees more than five fold, and the contribution of diffuse sources of pollution to degradation of the nation's waterbodies continues to increase.

EFFECTS OF URBANIZATION ON WATERSHEDS

Urbanization causes change to natural systems that tends to occur in the following sequence. First, land use and land cover are altered as vegetation and topsoil are removed to make way for agriculture, or subsequently buildings, roads, and other urban infrastructure. These changes, and the introduction of a constructed drainage network, alter the hydrology of the local area, such that receiving waters in the affected watershed experience radically different flow regimes than prior to urbanization. Nearly all of the associated problems result from one underlying cause: loss of the water-retaining and evapotranspirating functions of the soil and vegetation in the urban landscape. In an undeveloped area, rainfall typically infiltrates into the ground surface or is evapotranspirated by vegetation. In the urban landscape, these processes of evapotranspiration and water retention in the soil are diminished, such that stormwater flows rapidly across the land surface and arrives at the stream channel in short, concentrated bursts of high discharge. This transformation of the hydrologic regime is a wholesale reorganization of the processes of runoff generation, and it occurs throughout the developed landscape. When combined with the introduction of pollutant sources that accompany urbanization (such as lawns, motor vehicles, domesticated animals, and industries), these changes in hydrology have led to water quality and habitat degradation in virtually all urban streams.

The current state of the science has documented the characteristics of stormwater runoff, including its quantity and quality from many different land covers, as well as the characteristics of dry weather runoff. In addition, many correlative studies show how parameters co-vary in important but complex and poorly understood ways (e.g., changes in macroinvertebrate or fish communities associated with watershed road density or the percentage of impervious cover). Nonetheless, efforts to create mechanistic links between population growth, land-use change, hydrologic alteration, geomorphic adjustments, chemical contamination in stormwater, disrupted

energy flows and biotic interactions, and changes in ecological communities are still in development. Despite this assessment, there are a number of overarching truths that remain poorly integrated into stormwater management decision-making, although they have been robustly characterized for more than a decade and have a strong scientific basis that reaches even farther back through the history of published investigations.

There is a direct relationship between land cover and the biological condition of downstream receiving waters. The possibility for the highest levels of aquatic biological condition exists only with very light urban transformation of the landscape. Conversely, the lowest levels of biological condition are inevitable with extensive urban transformation of the landscape, commonly seen after conversion of about one-third to one-half of a contributing watershed into impervious area. Although not every degraded waterbody is a product of intense urban development, all highly urban watersheds produce severely degraded receiving waters.

The protection of aquatic life in urban streams requires an approach that incorporates all stressors. Urban Stream Syndrome reflects a multitude of effects caused by altered hydrology in urban streams, altered habitat, and polluted runoff. Focusing on only one of these factors is not an effective management strategy. For example, even without noticeably elevated pollutant concentrations in receiving waters, alterations in their hydrologic regimes are associated with impaired biological condition. More comprehensive biological monitoring of waterbodies will be critical to better understanding the cumulative impacts of urbanization on stream condition.

The full distribution and sequence of flows (i.e., the flow regime) should be taken into consideration when assessing the impacts of stormwater on streams. Permanently increased stormwater volume is only one aspect of an urban-altered storm hydrograph. It contributes to high in-stream velocities, which in turn increase streambank erosion and accompanying sediment pollution of surface water. Other hydrologic changes, however, include changes in the sequence and frequency of high flows, the rate of rise and fall of the hydrograph, and the season of the year in which high flows can occur. These all can affect both the physical and biological conditions of streams, lakes, and wetlands. Thus, effective hydrologic mitigation for urban development cannot just aim to reduce post-development peak flows to predevelopment peak flows.

Roads and parking lots can be the most significant type of land cover with respect to stormwater. They constitute as much as 70 percent of total impervious cover in ultra-urban landscapes, and as much as 80 percent of the directly connected impervious cover. Roads tend to capture and export more stormwater pollutants than other land covers in these highly impervious areas, especially in regions of the country having mostly small rainfall events. As rainfall amounts become larger, pervious areas in most residential land uses become more significant sources of runoff, sediment, nutrients, and landscaping chemicals. In all cases, directly connected impervious surfaces (roads, parking lots, and roofs that are directly connected to the drainage system) produce the first runoff observed at a storm-drain inlet and outfall because their travel times are the quickest.

MONITORING AND MODELING

The stormwater monitoring requirements under the EPA Stormwater Program are variable and generally sparse, which has led to considerable skepticism about their usefulness. This report considers the amount and value of the data collected over the years by municipalities (which are substantial on a nationwide basis) and by industries, and it makes suggestions for improvement. The MS4 and particularly the industrial stormwater monitoring programs suffer from a paucity of data, from inconsistent sampling techniques, and from requirements that are difficult to relate to the compliance of individual dischargers. For these reasons, conclusions about stormwater management are usually made with incomplete information. Stormwater management would benefit most substantially from a well-balanced monitoring program that encompasses chemical, biological, and physical parameters from outfalls to receiving waters.

Many processes connect sources of pollution to an effect observed in a downstream receiving water—processes that can be represented in watershed models, which are the key to linking stormwater dischargers to impaired receiving waters. The report explores the current capability of models to make such links, including simple models and more involved mechanistic models. At the present time, stormwater modeling has not evolved enough to consistently say whether a particular discharger can be linked to a specific waterbody impairment. Some quantitative predictions can be made, particularly those that are based on well-supported causal relationships of a variable that responds to changes in a relatively simple driver (e.g., modeling how a runoff hydrograph or pollutant loading change in response to increased impervious land cover). However, in almost all cases, the uncertainty in the modeling and the data (including its general unavailability), the scale of the problems, and the presence of multiple stressors in a watershed make it difficult to assign to any given source a specific contribution to water quality impairment.

Because of a 10-year effort to collect and analyze monitoring data from MS4s nationwide, the quality of stormwater from urbanized areas is well characterized. These results come from many thousands of storm events, systematically compiled and widely accessible; they form a robust dataset of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate stormwater pollutant concentrations from various land uses. Additional data are available from other stormwater permit holders that were not originally included in the database and from ongoing projects, and these should be acquired to augment the database and improve its value in stormwater management decision-making.

Industry should monitor the quality of stormwater discharges from certain critical industrial sectors in a more sophisticated manner, so that permitting authorities can better establish benchmarks and technology-based effluent guidelines. Many of the benchmark monitoring requirements and effluent guidelines for certain industrial subsectors are based on inaccurate and old information. Furthermore, there has been no nationwide compilation and analysis of industrial benchmark data, as has occurred for MS4 monitoring data, to better understand typical stormwater concentrations of pollutants from various industries.

Continuous, flow-weighted sampling methods should replace the traditional collection of stormwater data using grab samples. Data obtained from too few grab samples are highly variable, particularly for industrial monitoring programs, and subject to greater uncertainly because of experimenter error and poor data-collection practices. In order to use stormwater data for decision making in a scientifically defensible fashion, grab sampling should be abandoned as a credible stormwater sampling approach for virtually all applications. It should be replaced by more accurate and frequent continuous sampling methods that are flow weighted. Flow-weighted composite monitoring should continue for the duration of the rain event. Emerging sensor systems that provide high temporal resolution and real-time estimates for specific pollutants should be further investigated, with the aim of providing lower costs and more extensive monitoring systems to sample both streamflow and constituent loads.

Watershed models are useful tools for predicting downstream impacts from urbanization and designing mitigation to reduce those impacts, but they are incomplete in scope and do not offer definitive causal links between polluted discharges and downstream degradation. Every model simulates only a subset of the multiple interconnections between physical, chemical, and biological processes found in any watershed, and they all use a grossly simplified representation of the true spatial and temporal variability of a watershed. To speak of a "comprehensive watershed model" is thus an oxymoron, because the science of stormwater is not sufficiently far advanced to determine causality between all sources, resulting stressors, and their physical, chemical, and biological responses. Thus, it is not yet possible to create a protocol that mechanistically links stormwater dischargers to the quality of receiving waters. The utility of models with more modest goals, however, can still be high—as long as the questions being addressed by the model are in fact relevant and important to the functioning of the watershed to which that model is being applied, and sufficient data are available to calibrate the model for the processes included therein.

STORMWATER MANAGEMENT APPROACHES

A fundamental component of EPA's stormwater program is the creation of stormwater pollution prevention plans that document the SCMs that will be used to prevent the permittee's stormwater discharges from degrading local waterbodies. Thus, a consideration of these measures—their effectiveness in meeting different goals, their cost, and how they are coordinated with one another—is central to any evaluation of the stormwater program. The statement of task asks for an evaluation of the relationship between different levels of stormwater pollution prevention plan implementation and in-stream water quality. Although the state of knowledge has yet to reveal the mechanistic links that would allow for a full assessment of that relationship, enough is known to design systems of SCMs, on a site-scale or local watershed scale, that can substantially reduce the effects of urbanization.

The characteristics, applicability, goals, effectiveness, and cost of nearly 20 different broad categories of SCMs to treat the quality and quantity of stormwater runoff are discussed in Chapter 5, organized as they might be applied from the rooftop to the stream. SCMs, when designed, constructed, and maintained correctly, have demonstrated the ability to reduce runoff volume and peak flows and to remove pollutants. A multitude of case studies illustrates the use of SCMs in specific settings and demonstrates that a particular SCM can have a measurable positive effect on water quality or a biological metric. However, the implementation of SCMs at the watershed scale has been too inconsistent and too recent to be able to definitively link their

performance to the prolonged sustainment—at the watershed level—of receiving water quality, in-stream habitat, or stream geomorphology.

Individual controls on stormwater discharges are inadequate as the sole solution to stormwater in urban watersheds. SCM implementation needs to be designed as a system, integrating structural and nonstructural SCMs and incorporating watershed goals, site characteristics, development land use, construction erosion and sedimentation controls, aesthetics, monitoring, and maintenance. Stormwater cannot be adequately managed on a piecemeal basis due to the complexity of both the hydrologic and pollutant processes and their effect on habitat and stream quality. Past practices of designing detention basins on a site-by-site basis have been ineffective at protecting water quality in receiving waters and only partially effective in meeting flood control requirements.

Nonstructural SCMs such as product substitution, better site design, downspout disconnection, conservation of natural areas, and watershed and land-use planning can dramatically reduce the volume of runoff and pollutant load from a new development. Such SCMs should be considered first before structural practices. For example, lead concentrations in stormwater have been reduced by at least a factor of 4 after the removal of lead from gasoline. Not creating impervious surfaces or removing a contaminant from the runoff stream simplifies and reduces the reliance on structural SCMs.

SCMs that harvest, infiltrate, and evapotranspirate stormwater are critical to reducing the volume and pollutant loading of small storms. Urban municipal separate stormwater conveyance systems have been designed for flood control to protect life and property from extreme rainfall events, but they have generally failed to address the more frequent rain events (<2.5 cm) that are key to recharge and baseflow in most areas. These small storms may only generate runoff from paved areas and transport the "first flush" of contaminants. SCMs designed to remove this class of storms from surface runoff (runoff-volume-reduction SCMs—rainwater harvesting, vegetated, and subsurface) can also help address larger watershed flooding issues.

Performance characteristics are starting to be established for most structural and some nonstructural SCMs, but additional research is needed on the relevant hydrologic and water quality processes within SCMs across different climates and soil conditions. Typical data such as long-term load reduction efficiencies and pollutant effluent concentrations can be found in the International Stormwater BMP Database. However, understanding the processes involved in each SCM is in its infancy, making modeling of these SCMs difficult. Seasonal differences, the time between storms, and other factors all affect pollutant loadings emanating from SCMs. Research is needed that moves away from the use of percent removal and toward better simulation of SCM performance. Research is particularly important for nonstructural SCMs, which in many cases are more effective, have longer life spans, and require less maintenance than structural SCMs. EPA should be a leader in SCM research, both directly by improving its internal modeling efforts and by funding state efforts to monitor and report back on the success of SCMs in the field. The retrofitting of urban areas presents both unique opportunities and challenges. Promoting growth in these areas is desirable because it takes pressure off the suburban fringes, thereby preventing sprawl, and it minimizes the creation of new impervious surfaces. However, it is more expensive than Greenfields development because of the existence of infrastructure and the limited availability and affordability of land. Both innovative zoning and development incentives, along with the careful selection SCMs, are needed to achieve fair and effective stormwater management in these areas. For example, incentive or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Publicly owned, consolidated SCMs should be strongly considered as there may be insufficient land to have small, on-site systems. The performance and maintenance of the former can be overseen more effectively by a local government entity. The types of SCMs that are used in consolidated facilities—particularly detention basins, wet/dry ponds, and stormwater wetlands—perform multiple functions, such as prevention of streambank erosion, flood control, and large-scale habitat provision.

INNOVATIVE STORMWATER MANAGEMENT AND REGULATORY PERMITTING

There are numerous innovative regulatory strategies that could be used to improve the EPA's stormwater program. The course of action most likely to check and reverse degradation of the nation's aquatic resources would be to **base all stormwater and other wastewater discharge permits on watershed boundaries instead of political boundaries.** Watershedbased permitting is the regulated allowance of discharges of water and wastes borne by those discharges to waters of the United States, with due consideration of: (1) the implications of those discharges for preservation or improvement of prevailing ecological conditions in the watershed's aquatic systems, (2) cooperation among political jurisdictions sharing a watershed, and (3) coordinated regulation and management of all discharges having the potential to modify the hydrology and water quality of the watershed's receiving waters.

Responsibility and authority for implementation of watershed-based permits would be centralized with a municipal lead permittee working in partnership with other municipalities in the watershed as co-permittees. Permitting authorities (designated states or, otherwise, EPA) would adopt a minimum goal in every watershed to avoid any further loss or degradation of designated beneficial uses in the watershed's component waterbodies and additional goals in some cases aimed at recovering lost beneficial uses. Permittees, with support by the states or EPA, would then move to comprehensive impact source analysis as a foundation for targeting solutions. The most effective solutions are expected to lie in isolating, to the extent possible, receiving waterbodies from exposure to those impact sources. In particular, low-impact design methods, termed Aquatic Resources Conservation Design in this report, should be employed to the fullest extent feasible and backed by conventional SCMs when necessary.

The approach gives municipal co-permittees more responsibility, with commensurately greater authority and funding, to manage all of the sources discharging, directly or through municipally owned conveyances, to the waterbodies comprising the watershed. This report also outlines a new monitoring program structured to assess progress toward meeting objectives and the overlying goals, diagnosing reasons for any lack of progress, and determining compliance by dischargers. The proposal further includes market-based trading of credits among dischargers to

achieve overall compliance in the most efficient manner and adaptive management to determine additional actions if monitoring demonstrates failure to achieve objectives.

As a first step to taking the proposed program nationwide, a pilot program is recommended that will allow EPA to work through some of the more predictable impediments to watershed-based permitting, such as the inevitable limits of an urban municipality's authority within a larger watershed.

Short of adopting watershed-based permitting, other smaller-scale changes to the EPA stormwater program are possible. These recommendations do not preclude watershed-based permitting at some future date, and indeed they lay the groundwork in the near term for an eventual shift to watershed-based permitting.

Integration of the three permitting types is necessary, such that construction and industrial sites come under the jurisdiction of their associated municipalities. Federal and state NPDES permitting authorities do not presently have, and can never reasonably expect to have, sufficient personnel to inspect and enforce stormwater regulations on more than 100,000 discrete point source facilities discharging stormwater. A better structure would be one where the NPDES permitting authority empowers the MS4 permittees to act as the first tier of entities exercising control on stormwater discharges to the MS4 to protect water quality. The National Pretreatment Program, EPA's successful treatment program for municipal and industrial wastewater sources, could serve as a model for integration.

To improve the industrial, construction, and MS4 permitting programs in their current configuration, EPA should (1) issue guidance for MS4, industrial, and construction permittees on what constitutes a design storm for water quality purposes; (2) issue guidance for MS4 permittees on methods to identify high-risk industrial facilities for program prioritization such as inspections; (3) support the compilation and collection of quality industrial stormwater effluent data and SCM effluent quality data in a national database; and (4) develop numerical expressions of the MS4 standard of "maximum extent practicable." Each of these issues is discussed in greater detail in Chapter 6.

Watershed-based permitting will require additional resources and regulatory program support. Such an approach shifts more attention to ambient outcomes as well as expanded permitting coverage. Additional resources for program implementation could come from shifting existing programmatic resources. For example, some state permitting resources may be shifted away from existing point source programs toward stormwater permitting. Strategic planning and prioritization could shift the distribution of federal and state grant and loan programs to encourage and support more watershed-based stormwater permitting programs. However, securing new levels of public funds will likely be required. All levels of government must recognize that additional resources may be required from citizens and businesses (in the form of taxes, fees, etc.) in order to operate a more comprehensive and effective stormwater permitting program.

FIGURE 2-6 Trend of the organophosphate pesticide diazinon in MS4 discharges that flow into a stormwater basin in Fresno County, California, following a ban on the pesticide. The figure shows the significant drop in the diazinon concentration in just four years to levels where it is no longer toxic to freshwater aquatic life. EPA prohibited the retail sale of diazinon for crack and crevice and virtually all indoor uses after December 31, 2002, and non-agriculture outdoor use was phased out by December 31, 2004. Restricted use for agricultural purposes is still allowed. SOURCE: Reprinted, with permission, from Brosseau (2007). Copyright 2006 by Fresno Metropolitan Flood Control District.

CONCLUSIONS AND RECOMMENDATIONS

In an ideal world, stormwater discharges would be regulated through direct controls on land use, strict limits on both the quantity and quality of stormwater runoff into surface waters, and rigorous monitoring of adjacent waterbodies to ensure that they are not degraded by stormwater discharges. Future land-use development would be controlled to prevent increases in stormwater discharges from predevelopment conditions, and impervious cover and volumetric restrictions would serve as a reliable proxy for stormwater loading from many of these developments. Large construction and industrial areas with significant amounts of impervious cover would face strict regulatory standards and monitoring requirements for their stormwater discharges. Products and other sources that contribute significant pollutants through stormwater—like de-icing materials, urban fertilizers and pesticides, and vehicular exhaust would be regulated at a national level to ensure that the most environmentally benign materials are used when they are likely to end up in surface waters.

In the United States, the regulation of stormwater looks quite different from this idealized vision. Since the primary federal statute—the CWA—is concerned with limiting pollutants into surface waters, the volume of discharges are secondary and are generally not regulated at all. Moreover, given the CWA's focus on regulating pollutants, there are few if any incentives to anticipate or limit intensive future land uses that generate large quantities of stormwater. Most stormwater discharges are regulated instead on an individualized basis with the demand that existing point sources of stormwater pollutants implement SCMs, without accounting for the cumulative contributions of multiple sources in the same watershed. Moreover, since individual stormwater discharges vary with terrain, rainfall, and use of the land, the restrictions governing

regulated parties are generally site-specific, leaving a great deal of discretion to the dischargers themselves in developing SWPPPs and self-monitoring to ensure compliance. While states and local governments are free to pick up the large slack left by the federal program, there are effectively no resources and very limited infrastructure with which to address the technical and costly challenges faced by the control of stormwater. These problems are exacerbated by the fact that land use and stormwater management responsibilities within local governments are frequently decoupled. The following conclusions and recommendations are made.

EPA's current approach to regulating stormwater is unlikely to produce an accurate or complete picture of the extent of the problem, nor is it likely to adequately control stormwater's contribution to waterbody impairment. The lack of rigorous end-ofpipe monitoring, coupled with EPA's failure to use flow or alternative measures for regulating stormwater, make it difficult for EPA to develop enforceable requirements for stormwater dischargers. Instead, under EPA's program, the stormwater permits leave a great deal of discretion to the regulated community to set their own standards and self-monitor.

Implementation of the federal program has also been incomplete. Current statistics on the states' implementation of the stormwater program, discharger compliance with stormwater requirements, and the ability of states and EPA to incorporate stormwater permits with TMDLs are uniformly discouraging. Radical changes to the current regulatory program (see Chapter 6) appear necessary to provide meaningful regulation of stormwater dischargers in the future.

Future land development and its potential increases in stormwater must be considered and addressed in a stormwater regulatory program. The NPDES permit program governing stormwater discharges does not provide for explicit consideration of future land use. Although the TMDL program expects states to account for future growth in calculating loadings, even these more limited requirements for degraded waters may not always be implemented in a rigorous way. In the future, EPA stormwater programs should include more direct and explicit consideration of future land developments. For example, stormwater permit programs could be predicated on rigorous projections of future growth and changes in impervious cover within an MS4. Regulators could also be encouraged to use incentives to lessen the impact of land development (e.g., by reducing needless impervious cover within future developments).

Flow and related parameters like impervious cover should be considered for use as proxies for stormwater pollutant loading. These analogs for the traditional focus on the "discharge" of "pollutants" have great potential as a federal stormwater management tool because they provide specific and measurable targets, while at the same time they focus regulators on water degradation resulting from the increased volume as well as increased pollutant loadings in stormwater runoff. Without these more easily measured parameters for evaluating the contribution of various stormwater sources, regulators will continue to struggle with enormously expensive and potentially technically impossible attempts to determine the pollutant loading from individual dischargers or will rely too heavily on unaudited and largely ineffective self-reporting, self-policing, and paperwork enforcement.

Local building and zoning codes, and engineering standards and practices that guide the development of roads and utilities, frequently do not promote or allow the most **innovative stormwater management.** Fortunately, a variety of regulatory innovations—from more flexible and thoughtful zoning to using design review incentives to guide building codes to having separate ordinances for new versus infill development can be used to encourage more effective stormwater management. These are particularly important to promoting redevelopment in existing urban areas, which reduces the creation of new impervious areas and takes pressure off of the development of lands at the urban fringe (i.e., reduces sprawl).

EPA should provide more robust regulatory guidelines for state and local government efforts to regulate stormwater discharges. There are a number of ambiguities in the current federal stormwater program that complicate the ability of state and local governments to rigorously implement the program. EPA should issue clarifying guidance on several key areas. Among the areas most in need of additional federal direction are the identification of industrial dischargers that constitute the highest risk with regard to stormwater pollution and the types of permit requirements that should apply to these high-risk sources. EPA should also issue more detailed guidance on how state and local governments might prioritize monitoring and enforcement of the numerous and diverse stormwater sources within their purview. Finally, EPA should issue guidance on how stormwater permits could be drafted to produce more easily enforced requirements that enable oversight and enforcement not only by government officials, but also by citizens. Further detail is found in Chapter 6.

EPA should engage in much more vigilant regulatory oversight in the national licensing of products that contribute significantly to stormwater pollution. De-icing chemicals, materials used in brake linings, motor fuels, asphalt sealants, fertilizers, and a variety of other products should be examined for their potential contamination of stormwater. Currently, EPA does not apparently utilize its existing licensing authority to regulate these products in a way that minimizes their contribution to stormwater contamination. States can also enact restrictions on or tax the application of pesticides or even ban particular pesticides or other particularly toxic products. Austin, for example, has banned the use of coal-tar sealants within city boundaries. States and localities have also experimented with alternatives to road salt that are less environmentally toxic. These local efforts are important and could ultimately help motivate broader scale, federal restrictions on particular products.

The federal government should provide more financial support to state and local efforts to regulate stormwater. State and local governments do not have adequate financial support to implement the stormwater program in a rigorous way. At the very least, Congress should provide states with financial support for engaging in more meaningful regulation of stormwater discharges. EPA should also reassess its allocation of funds within the NPDES program. The agency has traditionally directed funds to focus on the reissuance of NPDES wastewater permits, while the present need is to advance the NPDES stormwater program because NPDES stormwater permittees outnumber wastewater permittees more than five fold, and the contribution of diffuse sources of pollution to degradation of the nation's waterbodies continues to increase.

REFERENCES

CONCLUSIONS AND RECOMMENDATIONS

The present state of the science of stormwater reflects both the strengths and weaknesses of historic, monodisciplinary investigations. Each of the component disciplines—hydrology, geomorphology, aquatic chemistry, ecology, land use, and population dynamics—have well-tested theoretical foundations and useful predictive models. In particular, there are many correlative studies showing how parameters co-vary in important but complex and poorly understood ways (e.g., changes in fish community associated with watershed road density or the percentage of IC). Nonetheless, efforts to create mechanistic links between population growth, land-use change, hydrologic alteration, geomorphic adjustments, chemical contamination in stormwater, disrupted energy flows, and biotic interactions, to changes in ecological communities are still in development. Despite this assessment, there are a number of overarching truths that remain poorly integrated into stormwater management decision making, although they have been robustly characterized and have a strong scientific basis. These are expanded upon below.

There is a direct relationship between land cover and the biological condition of downstream receiving waters. The possibility for the highest levels of aquatic biological condition exists only with very light urban transformation of the landscape. Even then, alterations to biological communities have been documented at such low levels of imperviousness, typically associated with roads and the clearing of native vegetation, that there has been no real "urban development" at all. Conversely, the lowest levels of biological commonly seen after conversion of about one-third to one-half of a contributing watershed into impervious area. Although not every degraded waterbody is a product of intense urban development, all highly urban watersheds produce severely degraded receiving waters. Because of the close and, to date, inexorable linkage between land cover and the health of downstream waters, stormwater management is an unavoidable offshoot of watershed-based land-use planning (or, more commonly, its absence).

The protection of aquatic life in urban streams requires an approach that incorporates all stressors. Urban Stream Syndrome reflects a multitude of effects caused by altered hydrology in urban streams, altered habitat, and polluted runoff. Focusing on only one of these factors is not an effective management strategy. For example, even without noticeably elevated pollutant concentrations in receiving waters, alterations in their hydrologic regimes are associated with impaired biological condition. Achieving the articulated goals for stormwater management under the CWA will require a balanced approach that incorporates hydrology, water quality, and habitat considerations.

The full distribution and sequence of flows (i.e., the flow regime) should be taken into consideration when assessing the impacts of stormwater on streams. Permanently increased stormwater volume is only one aspect of an urban-altered storm hydrograph. It contributes to high in-stream velocities, which in turn increase streambank erosion and accompanying sediment pollution of surface water. Other hydrologic changes, however, include changes in the sequence and frequency of high flows, the rate of rise and fall of the hydrograph, and the season of the year in which high flows can occur. These all can affect both the physical and biological conditions of streams, lakes, and wetlands. Thus, effective hydrologic mitigation for urban development cannot just aim to reduce post-development peak flows to predevelopment peak flows.

A single design storm cannot adequately capture the variability of rain and how that translates into runoff or pollutant loadings, and thus is not suitable for addressing the multiple objectives of stormwater management. Of particular importance to the types of problems associated with urbanization is the size of rain events. The largest and most infrequent rains cause near-bank-full conditions and may be most responsible for habitat destruction; these are the traditional "design storms" used to design safe drainage systems. However, moderate-sized rains are more likely to be associated with most of the annual mass discharges of stormwater pollutants, and these can be very important to the eutrophication of lakes and nearshore waters. Water quality standards for bacterial indicators and total recoverable heavy metals are exceeded for almost *every* rain in urban areas. Therefore, the whole distribution of storm size needs to be evaluated for most urban receiving waters because many of these problems coexist.

Roads and parking lots can be the most significant type of land cover with respect to stormwater. They constitute as much as 70 percent of total impervious cover in ultra-urban landscapes, and as much as 80 percent of the directly connected impervious cover. Roads tend to capture and export more stormwater pollutants than other land covers in these highly impervious areas because of their close proximity to the variety of pollutants associated with automobiles. This is especially true in areas of the country having mostly small rainfall events (as in the Pacific Northwest). As rainfall amounts become larger, pervious areas in most residential land uses become more significant sources of runoff, sediment, nutrients, and landscaping chemicals. In all cases, directly connected impervious surfaces (roads, parking lots, and roofs that are directly connected to the drainage system) produce the first runoff observed at a storm-drain inlet and outfall because their travel times are the quickest.

Generally, the quality of stormwater from urbanized areas is well characterized, with the common pollutants being sediment, metals, bacteria, nutrients, pesticides, trash, and polycyclic aromatic hydrocarbons. These results come from many thousands of storm events from across the nation, systematically compiled and widely accessible; they form a robust data set of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate pollutant concentrations, which have been shown to vary by land cover and by region across the country. However, characterization data are relatively sparse for individual industrial operations, which makes these sources less amenable to generalized approaches based on reliable assumptions of pollutant types and loads. In addition, industrial operations vary greatly from site to site, such that it may be necessary to separate them into different categories in order to better understand industrial stormwater quality.

Nontraditional sources of stormwater pollution must be taken into consideration when assessing the overall impact of urbanization on receiving waterbodies. These nontraditional sources include atmospheric deposition, snowmelt, and dry weather discharges, which can constitute a significant portion of annual pollutant loadings from storm systems in urban areas (such as metals in Los Angeles). For example, atmospheric deposition of metals is a very significant component of contaminant loading to waterbodies in the Los Angeles region relative to other point and nonpoint sources. Similarly, much of the sediment found in receiving waters following watershed urbanization can come from streambank erosion as opposed to being contributed by polluted stormwater.

Biological monitoring of waterbodies is critical to better understanding the cumulative impacts of urbanization on stream condition. Over 25 years ago, individual states developed the concept of regional reference sites and developed multi-metric indices to identify and characterize degraded aquatic assemblages in urban streams. Biological assessments respond to the range of non-chemical stressors identified as being important in urban waterways including habitat degradation, hydrological alterations, and sediment and siltation impacts, as well as to the influence of nutrients and other chemical stressors where chemical criteria do not exist or where their effects are difficult to measure directly (e.g., episodic stressors). The increase in biological monitoring has also helped to frame issues related to exotic species, which are locally of critical importance but completely unrecognized by traditional physical monitoring programs.

Epidemiological studies on the human health risks of swimming in freshwater and marine waters contaminated by urban stormwater discharges in temperate and warm climates are needed. Unlike with aquatic organisms, there is little information on the health risks of urban stormwater to humans. Standardized watershed assessment methods to identify the sources of human pathogens and indicator organisms in receiving waters need to be developed, especially for those waters with a contact-recreation use designation that have had multiple exceedances of pathogen or indicator criteria in a relatively short period of time. Given their difficulty and expense, epidemiological studies should be undertaken only after careful characterization of water quality and stormwater flows in the study area.

REFERENCES

- Abrahams, A. 1984. Channel networks: A geomorphological perspective. Water Resources Research 20:161–168.
- Adeniyi, I. F., and I. O. Olabanji. 2005. The physico-chemical and bacteriological quality of rainwater collected over different roofing materials in Ile-Ife, southwestern Nigeria. Chemistry and Ecology 21(3):149–166.
- Ahn, J. H., S. B. Grant, C. Q. Surbeck, P. M. DiGiacomo, N. P. Nezlin, and S. Jiang. 2005. Coastal Water Quality Impact of Stormwater Runoff from an Urban Watershed in Southern California. Environ. Sci. Technol. 39(16):5940 -5953.
- Allan, J. D. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics.
- Anonymous. 2000. Fish kill at Pinch Gut Creek. The Birmingham News (AL). April 18.
- Arkoosh, M. R., E. Clemons, P. Huffman, and A. N. Kagley. 2001. Increased susceptibility of juvenile chinook salmon to *Vibriosis* after exposure to chlorinated and aromatic compounds found in contaminated urban estuaries. Journal of Aquatic and Animal Health 13:257–268.
- Athansiadis, K., B. Helmreich, and P. A. Wilderer. 2006. Infiltration of a copper roof runoff through artificial barriers. Water Science and Technology 54(6–7):281–289.
- Bailey, H. C., J. R. Elphick, A. Potter, and B. Zak. 1999. Zinc toxicity in stormwater runoff from sawmills in British Columbia. Water Research 33(11):2721–2725.

In order to develop a more consistent capability to support stormwater permitting needs, there should be increased investment in improving model paradigms, especially the practice and methods of model linkage as described above, and in stormwater monitoring. The latter may require investment in a new generation of sensors that can sample at temporal resolutions that can adjust to characterize low flow and the dynamics of storm flow, but are sufficiently inexpensive and autonomous to be deployed in multiple locations from distributed sources to receiving waterbodies of interest. Finally, as urban areas extend to encompass progressively lower-density development, the interactions of surface water and groundwater become more critical to the cumulative impact of stormwater on impaired waterbodies.

EPA needs to ensure continuous support and development of their water quality models and spatial data infrastructure. Beyond this, a set of distributed watershed models has been developed that can resolve the location and position of parcels within hydrologic flow fields; these are being modified for use as urban stormwater models. These models avoid the pitfalls of lumping, but they require much greater volumes of spatial data, provided by current remote sensing technology (e.g., lidar, airborne digital optical and infrared sensors) as well as the emerging set of in-stream sensor systems. While these methods are not yet operational or widespread, they should be further investigated and tested for their capabilities to support stormwater management.

CONCLUSIONS AND RECOMMENDATIONS

This chapter addresses what might be the two weakest areas of the stormwater program monitoring and modeling of stormwater. The MS4 and particularly the industrial stormwater monitoring programs suffer from (1) a paucity of data, (2) inconsistent sampling techniques, (3) a lack of analyses of available data and guidance on how permittees should be using the data to improve stormwater management decisions, and (4) requirements that are difficult to relate to the compliance of individual dischargers. The current state of stormwater modeling is similarly limited. Stormwater modeling has not evolved enough to consistently say whether a particular discharger can be linked to a specific waterbody impairment, although there are many correlative studies showing how parameters co-vary in important but complex and poorly understood ways (see Chapter 3). Some quantitative predictions can be made, particularly those that are based on well-supported causal relationships of a variable that responds to changes in a relatively simple driver (e.g., modeling how a runoff hydrograph or pollutant loading change in response to increased impervious land cover). However, in almost all cases, the uncertainty in the modeling and the data, the scale of the problems, and the presence of multiple stressors in a watershed make it difficult to assign to any given source a specific contribution to water quality impairment. More detailed conclusions and recommendations about monitoring and modeling are given below.

Because of a ten-year effort to collect and analyze monitoring data from MS4s nationwide, the quality of stormwater from urbanized areas is well characterized. These results come from many thousands of storm events, systematically compiled and widely accessible; they form a robust dataset of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate the EMC of many pollutants. Additional data are available from other stormwater permit holders that were not originally included in the database and from ongoing projects, and these should be acquired to augment the database and improve its value in stormwater management decision-making.

Industry should monitor the quality of stormwater discharges from certain critical industrial sectors in a more sophisticated manner, so that permitting authorities can better establish benchmarks and technology-based effluent guidelines. Many of the benchmark monitoring requirements and effluent guidelines for certain industrial subsectors are based on inaccurate and old information. Furthermore, there has been no nationwide compilation and analysis of industrial benchmark data, as has occurred for MS4 monitoring data, to better understand typical stormwater concentrations of pollutants from various industries. The absence of accurate benchmarks and effluent guidelines for critical industrial sectors discharging stormwater may explain the lack of enforcement by permitting authorities, as compared to the vigorous enforcement within the wastewater discharge program.

Industrial monitoring should be targeted to those sites having the greatest risk associated with their stormwater discharges. Many industrial sites have no or limited exposure to runoff and should not be required to undertake extensive monitoring. Visual inspections should be made, and basic controls should be implemented at these areas. Mediumrisk industrial sites should conduct monitoring so that a sufficient number of storms are measured over the life of the permit for comparison to regional benchmarks. Again, visual inspections and basic controls are needed for these sites, along with specialized controls to minimize discharges of the critical pollutants. Stormwater from high-risk industrial sites needs to be continuously monitored, similar to current point source monitoring practices. The use of a regionally calibrated stormwater model and random monitoring of the lower-risk areas will likely require additional monitoring.

Continuous, flow-weighted sampling methods should replace the traditional collection of stormwater data using grab samples. Data obtained from too few grab samples are highly variable, particularly for industrial monitoring programs, and subject to greater uncertainly because of experimenter error and poor data-collection practices. In order to use stormwater data for decision making in a scientifically defensible fashion, grab sampling should be abandoned as a credible stormwater sampling approach for virtually all applications. It should be replaced by more accurate and frequent continuous sampling methods that are flow weighted. Flow-weighted composite monitoring should continue for the duration of the rain event. Emerging sensor systems that provide high temporal resolution and real-time estimates for specific pollutants should be further investigated, with the aim of providing lower costs and more extensive monitoring systems to sample both streamflow and constituent loads.

Flow monitoring and on-site rainfall monitoring need to be included as part of stormwater characterization monitoring. The additional information associated with flow and rainfall data greatly enhance the usefulness of the much more expensive water quality monitoring. Flow monitoring should also be correctly conducted, with adequate verification and correct base-flow subtraction methods applied. Using regional rainfall data from locations distant from the monitoring location is likely to be a major source of error when rainfall factors are being investigated. The measurement, quality assurance, and maintenance of long-term precipitation records are both vital and nontrivial to stormwater management.

Whether a first flush of contaminants occurs at the start of a rainfall event depends on the intensity of rainfall, the land use, and the specific pollutant. First flushes are more common for smaller sites with greater imperviousness and thus tend to be associated with more intense land uses such as commercial areas. Even though a site may have a first flush of a constituent of concern, it is still important that any SCM be designed to treat as much of the runoff from the site as possible. In many situations, elevated discharges may occur later in an event associated with delayed periods of peak rainfall intensity.

Stormwater runoff in arid and semi-arid climates demonstrates a seasonal first-flush effect (i.e., the dirtiest storms are the first storms of the season). In these cases, it is important that SCMs are able to adequately handle these flows. As an example, early spring rains mixed with snowmelt may occur during periods when wet detention ponds are still frozen, hindering their performance. The first fall rains in the southwestern regions of the United States may occur after extended periods of dry weather. Some SCMs, such as street cleaning targeting leaf removal, may be more effective before these rains than at other times of the year.

Watershed models are useful tools for predicting downstream impacts from urbanization and designing mitigation to reduce those impacts, but they are incomplete in scope and typically do not offer definitive causal links between polluted discharges and downstream degradation. Every model simulates only a subset of the multiple interconnections between physical, chemical, and biological processes found in any watershed, and they all use a grossly simplified representation of the true spatial and temporal variability of a watershed. To speak of a "comprehensive watershed model" is thus an oxymoron, because the science of stormwater is not sufficiently far advanced to determine causality between all sources, resulting stressors, and their physical, chemical, and biological responses. Thus, it is not yet possible to create a protocol that mechanistically links stormwater dischargers to the quality of receiving waters. The utility of models with more modest goals, however, can still be high—as long as the questions being addressed by the model are in fact relevant and important to the functioning of the watershed to which that model is being applied, and sufficient data are available to calibrate the model for the processes included therein.

EPA needs to ensure that the modeling and monitoring capabilities of the nation are continued and enhanced to avoid losing momentum in understanding and eliminating stormwater pollutant discharges. There is a need to extend, develop, and support current modeling capabilities, emphasizing (1) the impacts of flow energy, sediment transport, contaminated sediment, and acute and chronic toxicity on biological systems in receiving waterbodies; (2) more mechanistic representation (physical, chemical, biological) of SCMs; and (3) coupling between a set of functionally specific models to promote the linkage of source, transport and transformation, and receiving water impacts of stormwater discharges. Stormwater models have typically not incorporated interactions with groundwater and have treated infiltration and recharge of groundwater as a loss term with minimal consideration of groundwater contamination or transport to receiving waterbodies. Emerging distributed modeling paradigms that simulate interactions of surface and subsurface flowpaths provide promising tools that should be further developed and tested for applications in stormwater analysis.

Chapter 5 Stormwater Management Approaches

A fundamental component of the U.S. Environmental Protection Agency's (EPA) Stormwater Program, for municipalities as well as industries and construction, is the creation of stormwater pollution prevention plans. These plans invariably document the stormwater control measures that will be used to prevent the permittee's stormwater discharges from degrading local waterbodies. Thus, a consideration of these measures—their effectiveness in meeting different goals, their cost, and how they are coordinated with one another—is central to any evaluation of the Stormwater Program. This report uses the term stormwater control measure (SCM) instead of the term best management practice (BMP) because the latter is poorly defined and not specific to the field of stormwater.

The committee's statement of task asks for an evaluation of the relationship between different levels of stormwater pollution prevention plan implementation and in-stream water quality. As discussed in the last two chapters, the state of the science has yet to reveal the mechanistic links that would allow for a full assessment of that relationship. However, enough is known to design systems of SCMs, on a site scale or local watershed scale, to lessen many of the effects of urbanization. Also, for many regulated entities the current approach to stormwater management consists of choosing one or more SCMs from a preapproved list. Both of these facts argue for the more comprehensive discussion of SCMs found in this chapter, including information on their characteristics, applicability, goals, effectiveness, and cost. In addition, a multitude of case studies illustrate the use of SCMs in specific settings and demonstrate that a particular SCM can have a measurable positive effect on water quality or a biological metric. The discussion of SCMs is organized along the gradient from the rooftop to the stream. Thus, pollutant and runoff prevention are discussed first, followed by runoff reduction and finally pollutant reduction.

HISTORICAL PERSPECTIVE ON STORMWATER CONTROL MEASURES

Over the centuries, SCMs have met different needs for cities around the world. Cities in the Mesopotamian Empire during the second millennium BC had practices for flood control, to convey waste, and to store rain water for household and irrigation uses (Manor, 1966) (see Figure 5-1). Today, SCMs are considered a vital part of managing flooding and drainage problems in a city. What is relatively new is an emphasis on using the practices to remove pollutants from stormwater and selecting practices capable of providing groundwater recharge. These recent expectations for SCMs are not readily accepted and require an increased commitment to the proper design and maintenance of the practices.

With the help of a method for estimating peak flows (the Rational Method, see Chapter 4), the modern urban drainage system came into being soon after World War II. This generally consisted of a system of catch basins and pipes to prevent flooding and drainage problems by efficiently delivering runoff water to the nearest waterbody. However, it was soon realized that delivering the water too quickly caused severe downstream flooding and bank erosion in the receiving water. To prevent bank erosion and provide more space for flood waters, some stream channels were enlarged and lined with concrete (see Figure 5-2). But while hardening and

FIGURE 5-1 Cistern tank, Kamiros, Rhodes (ancient Greece, 7th century BC). SOURCE: Robert Pitt.

FIGURE 5-2 Concrete channel in Lincoln Creek, Milwaukee, Wisconsin. SOURCE: Roger Bannerman.

enlarging natural channels is a cost-effective solution to erosion and flooding, the modified channel increases downstream peak flows and it does not provide habitat to support a healthy aquatic ecosystem.

Some way was needed to control the quantity of water reaching the end of pipes during a runoff event, and on-site detention (Figure 5-3) became the standard for accomplishing this. Ordinances started appearing in the early 1970s, requiring developers to reduce the peaks of different size storms, such as the 10-year, 24-hour storm. The ordinances were usually intended to prevent future problems with peak flows by requiring the installation of flow control structures, such as detention basins, in new developments. Detention basins can control peak flows directly below the point of discharge and at the property boundary. However, when designed on a site-by-site basis without taking other basins into account, they can lead to downstream flooding problems because volume is not reduced (McCuen, 1979; Ferguson, 1991; Traver and Chadderton, 1992; EPA, 2005d). In addition, out of concerns for clogging, openings in the outlet structure of most basins are generally too large to hold back flows from smaller, more frequent storms. Furthermore, low-flow channels have been constructed or the basins have been graded to move the runoff through the structure without delay to prevent wet areas and to make it easier to mow and maintain the detention basin.

Because of the limitations of on-site detention, infiltration of urban runoff to control its volume has become a recent goal of stormwater management. Without stormwater infiltration, municipalities in wetter regions of the country can expect drops in local groundwater levels, declining stream base flows (Wang et al., 2003a), and flows diminished or stopped altogether from springs feeding wetlands and lakes (Leopold, 1968; Ferguson, 1994).

The need to provide volume control marked the beginning of low-impact development (LID) and conservation design (Arendt, 1996; Prince George's County, 2000), which were founded on the seminal work of landscape architect Ian McHarg and associates decades earlier (McHarg and Sutton, 1975; McHarg and Steiner, 1998). The goal of LID is to allow for development of a site while maintaining as much of its natural hydrology as possible, such as infiltration, frequency and volume of discharges, and groundwater recharge. This is accomplished with infiltration practices, functional grading, open channels, disconnection of

FIGURE 5-3 On-site detention. SOURCE: Tom Schueler.

impervious areas, and the use of fewer impervious surfaces. Much of the LID focus is to manage the stormwater as close as possible to its source—that is, on each individual lot rather than conveying the runoff to a larger regional SCM. Individual practices include rain gardens (see Figure 5-4), disconnected roof drains, porous pavement, narrower streets, and grass swales. In some cases, LID site plans still have to include a method for passing the larger storms safely, such as a regional infiltration or detention basin or by increasing the capacity of grass swales.

Infiltration has been practiced in a few scattered locations for a long time. For example, on Long Island, New York, infiltration basins were built starting in 1930 to reduce the need for a storm sewer system and to recharge the aquifer, which was the only source of drinking water (Ferguson, 1998). The Cities of Fresno, California, and El Paso, Texas, which faced rapidly dropping groundwater tables, began comprehensive infiltration efforts in the 1960s and 1970s. In the 1980s Maryland took the lead on the east coast by creating an ambitious statewide infiltration program. The number of states embracing elements of LID, especially infiltration, has increased during the 1990s and into the new century and includes California, Florida, Minnesota, New Jersey, Vermont, Washington, and Wisconsin.

FIGURE 5-4 Rain Garden in Madison, Wisconsin. SOURCE: Roger Bannerman.

Evidence gathered in the 1970s and 1980s suggested that pollutants be added to the list of things needing control in stormwater (EPA, 1983). Damages caused by elevated flows, such as stream habitat destruction and floods, were relatively easy to document with something as simple as photographs. Documentation of elevated concentrations of conventional pollutants and potentially toxic pollutants, however, required intensive collection of water quality samples during runoff events. Samples collected from storm sewer pipes and urban streams in the Menomonee River watershed in the late 1970s clearly showed the concentrations of many pollutants, such as heavy metals and sediment, were elevated in urban runoff (Bannerman et al., 1979). Levels of heavy metals were especially high in industrial-site runoff, and construction-site erosion was calculated to be a large source of sediment in the watershed. This study was followed by the National Urban Runoff Program, which added more evidence about the high levels of some pollutants found in urban runoff (Athayde et al., 1983; Bannerman et al., 1983).

With new development rapidly adding to the environmental impacts of existing urban areas, the need to develop good stormwater management programs is more urgent than ever. For a variety of reasons, the greatest potential for stormwater management to reduce the footprint of urbanization is in the suburbs. These areas are experiencing the fastest rates of growth, they are more amenable to stormwater management because buildings and infrastructure are not yet in place, and costs for stormwater management can be borne by the developer rather than by taxpayers. Indeed, most structural SCMs are applied to new development rather than existing urban areas. Many of the most innovative stormwater programs around the country are found in the suburbs of large cities such as Seattle, Austin, and Washington, D.C. When stormwater management in ultra-urban areas is required, it entails the retrofitting of detention basins and other flow control structures or the introduction of innovative below-ground structures characterized by greater technical constraints and higher costs, most of which are charged to local taxpayers.

Current-day SCMs represent a radical departure from past practices, which focused on dealing with extreme flood events via large detention basins designed to reduce peak flows at the downstream property line. As defined in this chapter, SCMs now include practices intended to meet broad watershed goals of protecting the biology and geomorphology of receiving waters in addition to flood peak protection. The term encompasses such diverse actions as using more conventional practices like basins and wetland to installing stream buffers, reducing impervious surfaces, and educating the public.

REVIEW OF STORMWATER CONTROL MEASURES

Stormwater control measures refer to what is defined by EPA (1999) as "a technique, measure, or structural control that is used for a given set of conditions to manage the quantity and improve the quality of stormwater runoff in the most cost-effective manner." SCMs are designed to mitigate the changes to both the quantity and quality of stormwater runoff that are caused by urbanization. Some SCMs are engineered or constructed facilities, such as a stormwater wetland or infiltration basin, that reduce pollutant loading and modify volumes and flow. Other SCMs are preventative, including such activities as education and better site design to limit the generation of stormwater runoff or pollutants.

Stormwater Management Goals

It is impossible to discuss SCMs without first considering the goals that they are expected to meet. A broadly stated goal for stormwater management is to reduce pollutant loads to waterbodies and maintain, as much as possible, the natural hydrology of a watershed. On a practical level, these goals must be made specific to the region of concern and embedded in the strategy for that region. Depending on the designated uses of the receiving waters, climate, geomorphology, and historical development, a given area may be more or less sensitive to both pollutants and hydrologic modifications. For example, goals for groundwater recharge might be higher in an area with sandy soils as compared to one with mostly clayey soils; watersheds in the coastal zone may not require hydrologic controls. Ideally, the goals of stormwater management should be linked to the water quality standards for a given state's receiving waters. However,

because of the substantial knowledge gap about the effect of a particular stormwater discharge on a particular receiving water (see Chapter 3 conclusions), surrogate goals are often used by state stormwater programs in lieu of water quality standards. Examples include credit systems, mandating the use of specific SCMs, or achieving stormwater volume reduction. Credit systems might be used for practices that are known to be productive but are difficult to quantify, such as planting trees. Specific SCMs might be assumed to remove a percent of pollutants, for example 85 percent removal of total suspended solids (TSS) within a stormwater wetland. Reducing the volume of runoff from impervious surfaces (e.g., using an infiltration device) might be assumed to capture the first flush of pollutants during a storm event. Before discussing specific state goals, it is worth understanding the broader context in which goals are set.

Trade-offs Between Stormwater Control Goals and Costs

The potentially substantial costs of implementing SCMs raise a number of fundamental social choices concerning land-use decisions, designated uses, and priority setting for urban waters. To illustrate some of these choices, consider a hypothetical urban watershed with three possible land-cover scenarios: 25, 50, and 75 percent impervious surface. A number of different beneficial uses could be selected for the streams in this watershed. At a minimum, the goal may be to establish low-level standards to protect public health and safety. To achieve this, sufficient and appropriate SCMs might be applied to protect residents from flooding and achieve water quality conditions consistent with secondary human contact. Alternatively, the designated use could be to achieve the physical, chemical, and/or biological conditions sufficient to provide exceptional aquatic habitat (e.g., a high-quality recreational fishery). The physical, biological, and chemical conditions supportive of this use might be similar to a reference stream located in a much less disturbed watershed. Achieving this particular designated use would require substantially greater resources and effort than achieving a secondary human contact use. Intermediate designated uses could also be imagined, including improving ambient water quality conditions that would make the water safe for full-body emersion (primary human contact) or habitat conditions for more tolerant aquatic species.

Figure 5-5 sketches what the marginal (incremental) SCM costs (opportunity costs) might be to achieve different designated uses given different amounts of impervious surface in the watershed. The horizontal axis orders potential designated uses in terms of least difficult to most difficult to achieve. The three conceptual curves represent the SCM costs under three different impervious surface scenarios. The relative positions of the cost curves indicate that achieving any specific designated use will be more costly in situations with a higher percentage of the watershed in impervious cover. All cost curves are upward sloping, reflecting the fact that incremental improvements in designated uses will be increasingly costly to achieve. The cost curves are purely conceptual, but nonetheless might reasonably reflect the relative costs and direction of change associated with achieving specific designated uses in different watershed conditions.

The locations of the cost curves suggest that in certain circumstances not all designated uses can be achieved or can be achieved only at an extremely high cost. For example, the attainment of exceptional aquatic uses may be unachievable in areas with 50 percent impervious surface even with maximum application of SCMs. In this illustration, the cost of achieving even secondary human contact use is high for areas with 75 percent impervious surfaces. In such

FIGURE 5-5 Cost of achieving designated uses in a hypothetical urban watershed. MCC is the marginal control cost, which represents the incremental costs to achieve successive expansion of designated uses through SCMs. The curves are constructed on the assumption that the lowest cost combination of SCMs would be implemented at each point on the curve.

highly urbanized settings, achievement of only adequate levels of aquatic uses could be exceedingly high and strain the limits of what is technically achievable. Finally, the existing and likely expected future land-use conditions have significant implications for what is achievable and at what cost. Clearly land-use decisions have an impact on the cost and whether a use can be achieved, and thus they need to be included in the decision process. The trade-off between costs and achieving specific designated uses can change substantially given different development patterns.

The purpose of Figure 5-5 is not to identify the precise location of the cost curves or to identify thresholds for achieving specific designated uses. Rather, these concepts are used to illustrate some fundamental trade-offs that confront public and private investment and regulatory decisions concerning stormwater management. The general relationships shown in Figure 5-5 suggest the need for establishing priorities for investments in stormwater management and controls, and connecting land usage and watershed goals. Setting overly ambitious or costly goals for urban streams may result in the perverse consequence of causing more waters to fail to meet designated uses. For example, consider efforts to secure ambitious designated uses in highly developed areas or in an area slated for future high-density development. Regulatory requirements and investments to limit stormwater quantity and quality through open-space requirements, areas set aside for infiltration and water detention, and strict application of maximum extent practicable controls have the effect of both increasing development costs and diminishing land available for residential and commercial properties. Policies designed to achieve exceedingly costly or infeasible designated uses in urban or urbanizing areas could have the net consequence of shifting development (and associated impervious surface) out into neighboring areas and watersheds. The end result might be minimal improvements in "withinwatershed" ambient conditions but a decrease in designated uses (more impairments) elsewhere.

In such a case, it might be sound water quality policy to accept higher levels of impervious surface in targeted locations, more stormwater-related impacts, and less ambitious designated uses in urban watersheds in order to preserve and protect designated uses in other watersheds.

Setting unrealistic or unachievable water quality objectives in urban areas can also pose political risks for stormwater management. The cost and difficulty of achieving ambitious water quality standards for urban stream goals may be understood by program managers but pursued nonetheless in efforts to demonstrate public commitment to achieving high-quality urban waters. Yet, promising what cannot be realistically achieved may act to undermine public support for urban stormwater programs. Increasing costs without significant observable improvements in ambient water conditions or achievement of water quality standards could ultimately reduce public commitment to the program. Thus, there are risks of "setting the bar" too high, or not coordinating land use and designated stream uses.

The cost of setting the bar too low can also be significant. Stormwater requirements that result in ineffective stormwater management will not achieve or maintain the desired water uses and can result in impairments. Loss of property, degraded waters, and failed infrastructure are tangible costs to the public (Johnston et al., 2006). Streambank rehabilitation costs can be severe, and loss of confidence in the ability to meet stormwater goals can result.

The above should not be construed as an argument for or against devoting resources to SCMs; rather, such decisions should be made with an open and transparent acknowledgment and understanding of the costs and consequences involved in those decisions.

Common State Stormwater Goals

Most states do not and have never had an overriding water quality objective in their stormwater program, but rather have used engineering criteria for SCM performance to guide stormwater management. These criteria can be loosely categorized as

- Erosion and sedimentation control,
- Recharge/base flow,
- Water quality,
- Channel protection, and
- Flooding events.

The SCMs used to address these goals work by minimizing or eliminating increases in stormwater runoff volume, peak flows, and/or the pollutant load carried by stormwater.

The criteria chosen by any given state usually integrate state, federal, and regional laws and regulations. Areas of differing climates may emphasize one goal over another, and the levels of control may vary drastically. Contrast a desert region where rainwater harvesting is extremely important versus a coastal region subject to hurricanes. Some areas like Seattle have frequent smaller volume rainfalls—the direct opposite of Austin, Texas—such that small volume controls would be much more effective in Seattle than Austin. Regional geology (karst) or the presence of Brownfields may affect the chosen criteria as well.

The committee's survey of State Stormwater Programs (Appendix C) reflects a wide variation in program goals as reflected in the criteria found in their SCM manuals. Some states have no specific criteria because they do not produce SCM manuals, while others have manuals that address every category of criteria from flooding events to groundwater recharge. Some states rely upon EPA or other states' or transportation agencies' manuals. In general, soil and

erosion control criteria are the most common and often exist in the absence of any other state criteria. This wide variation reflects the difficulties that states face in keeping up with rapidly changing information about SCM design and performance.

The criteria are ordered below (after the section on erosion and sediment control) according to the size of the storm they address, from smallest to most extreme. The criteria can be expressed in a variety of ways, from a simple requirement to control a certain volume of rainfall or runoff (expressed as a depth) to the size of a design storm to more esoteric requirements, such as limiting the time that flow can be above a certain threshold. The volumes of rainfall or runoff are based on statistics of a region's daily rainfall, and they approximate one another as the percentage of impervious cover increases. Design storms for larger events that address channel protection and flooding are usually based on extreme event statistics and tend to represent a temporal pattern of rainfall over a set period, usually a day. Finally, it should be noted that the categories are not mutually exclusive; for example, recharge of groundwater may enhance water quality via pollutant removal during the infiltration process.

Erosion and Sedimentation Control. This criterion refers to the prevention of erosion and sedimentation of sites during construction and is focused at the site level. Criteria usually include a barrier plan to prevent sedimentation from leaving the site (e.g., silt fences), practices to minimize the potential erosion (phased construction), and facilities to capture and remove sediment from the runoff (detention). Because these measures are considered temporary, smaller extreme events are designated as the design storm than what typically would be used if flood control were the goal.

Recharge/Base Flow. This criterion is focused on sustaining the preconstruction hydrology of a site as it relates to base flow and recharge of groundwater supplies. It may also include consideration of water usage of the property owners and return through septic tanks and tile fields. The criterion, expressed as a volume requirement, is usually to capture around 0.5 to 1.0 inch of runoff from impervious surfaces depending on the climate and soil type of the region. (For this range of rainfall, very little runoff occurs from grass or forested areas, which is why runoff from impervious surfaces is used as the criterion.)

Water Quality. Criteria for water quality are the most widespread, and are usually crafted as specific percent removal for pollutants in stormwater discharge. Generally, a water quality criterion is based on a set volume of stormwater being treated by the SCM. The size of the storm can run from the first inch of rainfall off impervious surfaces to the runoff from the one-year, 24-hour extreme storm event. It should be noted that the term "water quality" covers a wide range of groundwater and surface water pollutants, including water temperature and emerging contaminants.

Many of the water quality criteria are surrogates for more meaningful parameters that are difficult to quantify or cannot be quantified, or they reflect situations where the science is not developed enough to set more explicit goals. For example, the Wisconsin state requirement of an 80 percent reduction in TSS in stormwater discharge does not apply to receiving waters themselves. However, it presumes that there will be some water quality benefits in receiving waters; that is, phosphorus and fecal coliform might be captured by the TSS requirement. Similarly water quality criteria may be expressed as credits for good practices, such as using LID, street sweeping, or stream buffers.

Channel Protection. This criterion refers to protecting channels from accelerated erosion during storm events due to the increased runoff. It is tied to either the presumed "channel-forming event"—what geomorphologists once believed was the storm size that created the channel due to erosion and deposition—or to the minimum flow that accomplishes any degree of sediment transport. It is generally defined as somewhere between the one- and five-year, 24-hour storm event or a discharge level typically exceeded once to several times per year. Some states require a reduction in runoff volume for these events to match preconstruction levels. Others may require that the average annual duration of flows that are large enough to erode the streambank be held the same on an annual basis under pre- and postdevelopment conditions.

It is not uncommon to find states where a channel protection goal will be written poorly, such that it does not actually prevent channel widening. For example, MacRae (1997) presented a review of the common "zero runoff increase" discharge criterion, which is commonly met by using ponds designed to detain the two-year, 24-hour storm. MacRae showed that stream bed and bank erosion occur during much lower events, namely mid-depth flows that generally occur more often than once a year, not just during bank-full conditions (approximated by the two-year event). This finding is entirely consistent with the well-established geomorphological literature (e.g., Pickup and Warner, 1976; Andrews, 1984; Carling, 1988; Sidle, 1988). During monitoring near Toronto, MacRae found that the duration of the geomorphically significant predevelopment mid-bankfull flows increased by more than four-fold after 34 percent of the basin had been urbanized. The channel had responded by increasing in cross-sectional area by as much as three times in some areas, and was still expanding.

Flooding Events. This criterion addresses public safety and the protection of property and is applicable to storm events that exceed the channel capacity. The 10- through the 100-year storm is generally used as the standard. Volume-reduction SCMs can aid or meet this criterion depending on the density of development, but usually assistance is needed in the form of detention SCMs. In some areas, it may be necessary to reduce the peak flow to below preconstruction levels in order to avoid the combined effects of increased volume, altered timing, and a changed hydrograph. It should be noted that some states do not consider the larger storms (100-year) to be a stormwater issue and have separate flood control requirements.

Each state develops a framework of goals, and the corresponding SCMs used to meet them, which will depend on the scale and focus of the stormwater management strategy. A few states have opted to express stormwater goals within the context of watershed plans for regions of the state. However, the setting of goals on a watershed basis is time-consuming and requires study of the watersheds in question. The more common approach has been to set generic or minimal controls for a region that are not based on a watershed plan. This has been done in Maryland, Wisconsin (see Box 5-1), and Pennsylvania (see Box 5-2). This strategy has the advantage of more rapid implementation of some SCMs because watershed management plans are not required. In order to be applicable to all watersheds in the state, the goals must target common pollutants or flow modification factors where the processes are well known. It must also be possible for these goals to be stated in National Pollutant Discharge Elimination System (NPDES) permits. Many states have selected TSS reduction, volume reduction, and peak flow control as generic goals. A generic goal is not usually based on potentially toxic pollutants, such as heavy metals, due to the complexity of their interaction in the environment, the dependence on

BOX 5-1 Wisconsin Statewide Goal of TSS Reduction for Stormwater Management

To measure the success of stormwater management, Wisconsin has statewide goals for sediment and flow (Wisconsin DNR, 2002). A lot is known about the impacts of sediment on receiving waters, and any reduction is thought to be beneficial. Flow can be a good indicator of other factors; for example, reducing peak flows will prevent bank erosion.

Developing areas in Wisconsin are required to reduce the annual TSS load by 80 percent compared to no controls (Wisconsin DNR, 2002). Two flow-rated requirements for developing areas are in the administrative rules. One is that the site must maintain the peak flow for the two-year, 24-hour rainfall event. Second, the annual infiltration volume for postdevelopment must be within 90 percent of the predevelopment volumes for residential land uses; the number for non-residential is 60 percent. Both of these flow control goals are thought to also have water quality benefits.

The goal for existing urban areas is an annual reduction in TSS loads. Municipalities must reduce their annual TSS loads by 20 percent, compared to no controls, by 2008. This number is increased to 40 percent by 2013. All of these goals were partially selected to be reasonable based on cost and technical feasibility.

BOX 5-2 Volume-Based Stormwater Goals in Pennsylvania

Pennsylvania has developed a stormwater *Best Management Practices* manual to support the Commonwealth's Storm Water Management Act. This manual and an accompanying sample ordinance advocates two methods for stormwater control based on volume, termed Control Guidance (CG) 1 and 2. The first (CG-1) requires that the runoff volume be maintained at the two-year, 24-hour storm level (which corresponds to approximately 3.5 inches of rainfall in this region) through infiltration, evapotranspiration, or reuse. This criterion addresses recharge/base flow, water quality, and channel protection, as well as helping to meet flooding requirements.

The second method (CG-2) requires capture and removal of the first inch of runoff from paved areas, with infiltration strongly recommended to address recharge and water quality issues. Additionally, to meet channel protection criteria, the second inch is required to be held for 24 hours, which should reduce the channel-forming flows. (This is an unusual criterion in that it is expressed as what an SCM can accomplish, not as the flow that the channel can handle.) Peak flows for larger events are required to be at preconstruction levels or less if the need is established by a watershed plan. These criteria are the starting point for watershed or regional plans, to reduce the effort of plan development. Some credits are available for tree planting, and other nonstructural practices are advocated for dissolved solids mitigation. See http://www.dep.state.pa.us/dep/deputate/watermgt/wc/subjects/stormwatermanagement/default.htm.

the existing baseline conditions, and the need for more understanding on what are acceptable levels. The difficulty with the generic approach is that specific watershed issues are not addressed, and the beneficial uses of waters are not guaranteed.

One potential drawback of a strategy based on a generic goal coupled to the permit process is that the implementation of the goal is usually on a site-by-site basis, especially for developing areas. Generic goals may be appropriate for certain ubiquitous watershed processes and are clearly better than having no goals at all. However, they do not incorporate the effects of differences in past development and any unique watershed characteristics; they should be considered just a good starting point for setting watershed-based goals.

Role of SCMs in Achieving Stormwater Management Goals

One important fundamental change in SCM design philosophy has come about because of the recent understanding of the roles of smaller storms and of impervious surfaces. This is demonstrated by Box 3-4, which shows that for the Milwaukee area more than 50 percent of the rainfall by volume occurs in storms that have a depth of less then 0.75 inch. If extreme events are the only design criteria for SCMs, the vast majority of the annual rainfall will go untreated or uncontrolled, as it is smaller than the minimum extreme event. This relationship is not the same in all regions. For example, in Austin, Texas, the total yearly rainfall is smaller than in Milwaukee, but a large part of the volume occurs during larger storm events, with long dry periods in between.

The upshot is that the design strategy for stormwater management, including drainage systems and SCMs, should take a region's rainfall and associated runoff conditions into account. For example, an SCM chosen to capture the majority of the suspended solids, recharge the baseflow, reduce streambank erosion, and reduce downstream flooding in Pennsylvania or Seattle (which have moderate and regular rainfall) would likely not be as effective in Texas, where storms are infrequent and larger. In some areas, a reduction in runoff volume may not be sufficient to control streambank erosion and flooding, such that a second SCM like an extended detention stormwater wetland may be needed to meet management goals.

Finally, as discussed in greater detail in a subsequent section, SCMs are most effective from the perspective of both efficiency and cost when stormwater management is incorporated in the early planning stages of a community. Retrofitting existing development with SCMs is much more technically difficult and costly because the space may not be available, other infrastructure is already installed, or utilities may interfere. Furthermore, if the property is on private land or dedicated as an easement to a homeowners association, there may be regulatory limitations to what can be done. Because of these barriers, retrofitting existing urban areas often depends on engineered or manufactured SCMs, which are more expensive in both construction and operation.

Stormwater Control Measures

SCMs reduce or mitigate the generation of stormwater runoff and associated pollutants. These practices include both "structural" or engineered devices as well as more "nonstructural measures" such as land-use planning, site design, land conservation, education, and stewardship practices. Structural practices may be defined as any facility constructed to mitigate the adverse impacts of stormwater and urban runoff pollution. Nonstructural practices, which tend to be longer-term and lower-maintenance solutions, can greatly reduce the need for or increase the effectiveness of structural SCMs. For example, product substitution and land-use planning may be key to the successful implementation of an infiltration SCM. Preserving wooded areas and reducing street widths can allow the size of detention basins in the area to be reduced.

Table 5-1 presents the expansive list of SCMs that are described in this chapter. For most of the SCMs, each listed item represents a class of related practices, with individual methods discussed in greater detail later in the chapter. There are nearly 20 different broad categories of SCMs that can be applied, often in combination, to treat the quality and quantity of stormwater runoff. A primary difference among the SCMs relates to which stage of the development cycle

they are applied, where in the watershed they are installed, and who is responsible for implementing them.

The development cycle extends from broad planning and zoning to site design, construction, occupancy, retrofitting, and redevelopment. As can be seen, SCMs are applied throughout the entire cycle. The scale at which the SCM is applied also varies considerably. While many SCMs are installed at individual sites as part of development or redevelopment applications, many are also applied at the scale of the stream corridor or the watershed or to existing municipal stormwater infrastructure. The final column in Table 5-1 suggests who would implement the SCM. In general, the responsibility for implementing SCMs primarily resides with developers and local stormwater agencies, but planning agencies, landowners, existing industry, regulatory agencies, and municipal separate storm sewer system (MS4) permittees can also be responsible for implementing many key SCMs.

In Table 5-1, the SCMs are ordered in such a way as to mimic natural systems as rain travels from the roof to the stream through combined application of a series of practices throughout the entire development site. This order is upheld throughout the chapter, with the implication that no SCM should be chosen without first considering those that precede it on the list.

Given that there are 20 different SCM groups and a much larger number of individual design variations or practices within each group, it is difficult to authoritatively define the specific performance or effectiveness of SCMs. In addition, our understanding of their performance is rapidly changing to reflect new research, testing, field experience, and maintenance history. The translation of these new data into design and implementation guidance is accelerating as well. What is possible is to describe their basic hydrologic and water quality objectives and make a general comparative assessment of what is known about their design, performance, and maintenance as of mid-2008. This broad technology assessment is provided in Table 5-2, which reflects the committee's collective understanding about the SCMs from three broad perspectives:

- Is widely accepted design or implementation guidance available for the SCM and has it been widely disseminated to the user community?
- Have enough research studies been published to accurately characterize the expected hydrologic or pollutant removal performance of the SCM in most regions of the country?
- Is there enough experience with the SCM to adequately define the type and scope of maintenance needed to ensure its longevity over several decades?

Affirmative answers to these three questions are needed to be able to reliably quantify or model the ability of the SCM, which is an important element in defining whether the SCM can be linked to improvements in receiving water quality. As will be discussed in subsequent sections of this chapter, there are many SCMs for which there is only a limited understanding, particularly those that are nonstructural in nature.

The columns in Table 5-2 summarize several important factors about each SCM, including the ability of the SCM to meet hydrologic control objectives and water quality objectives, the availability of design guidance, the availability of performance studies, and whether there are maintenance protocols. The hydrologic control objectives range from complete prevention of stormwater flow to reduction in runoff volume and reduction in peak flows. The column on water quality objectives describes whether the SCM can prevent the generation of, or remove, contaminants of concern in stormwater.

Stormwater Control Measure	When	Where	Who
Product Substitution	Continuous	National, state, regional	Regulatory agencies
Watershed and Land-Use Planning	Planning stage	Watershed	Local planning agencies
Conservation of Natural	Site and watershed	Site,	Developer, local planning
Areas	planning stage	watershed	agency
Impervious Cover	Site planning stage	Site	Developer, local review
Minimization			authority
Earthwork Minimization	Grading plan	Site	Developer, local review authority
Erosion and Sediment Control	Construction	Site	Developer, local review authority
Reforestation and Soil Conservation	Site planning and construction	Site	Developer, local review authority
Pollution Prevention SCMs for Stormwater Hotspots	Post-construction or retrofit	Site	Operators and local and state permitting agencies
Runoff Volume Reduction— Rainwater harvesting	Post-construction or retrofit	Rooftop	Developer, local planning agency and review authority
Runoff Volume Reduction— Vegetated	Post-construction or retrofit	Site	Developer, local planning agency and review authority
Runoff Volume Reduction— Subsurface	Post-construction or retrofit	Site	Developer, local planning agency and review authority
Peak Reduction and Runoff Treatment	Post-construction or retrofit	Site	Developer, local planning agency and review authority
Runoff Treatment	Post-construction or retrofit	Site	Developer, local planning agency and review authority
Aquatic Buffers and Managed Floodplains	Planning, construction and post-construction	Stream corridor	Developer, local plan- ning agency and review authority, landowners
Stream Rehabilitation	Postdevelopment	Stream corridor	Local planning agency and review authority
Municipal Housekeeping	Postdevelopment	Streets and storm- water infrastructure	MS4 Permittee
Illicit Discharge Detection and Elimination	Postdevelopment	Stormwater infrastructure	MS4 Permittee
Stormwater Education	Postdevelopment	Stormwater infrastructure	MS4 Permittee
Residential Stewardship	Postdevelopment	Stormwater infrastructure	MS4 Permittee

TABLE 5-1 Summary of Stormwater Control Measures—When, Where, and Who

Note: Nonstructural SCMs are in italics.
The availability of design guidance tends to be greatest for the structural practices. Some but not all nonstructural practices are of recent origin, and communities lack available design guidance to include them as an integral element of local stormwater solutions. Where design guidance is available, it may not yet have been disseminated to the full population of Phase II MS4 communities.

The column on the availability of performance data is divided into those SCMs where enough studies have been done to adequately define performance, those SCMs where limited work has been done and the results are variable, and those SCMs where only a handful of studies are available. A large and growing number of performance studies are available that report the efficiencies of structural SCMs in reducing flows and pollutant loading (Strecker et al., 2004; ASCE, 2007; Schueler et al., 2007; Selbig and Bannerman, 2008). Many of these are compiled in the Center for Watershed Protection's National Pollutant Removal Performance Database for Stormwater Treatment Practices (http://www.cwp.org/Resource Library/Center Docs/SW/bmpwriteup 092007 v3.pdf), in the International Stormwater BMP Database (http://www.bmpdatabase.org/Docs/Performance%20Summary%20June%202008.pdf), and by the Water Environment Research Foundation (WERF, 2008). In cases where there is incomplete understanding of their performance, often information can be gleaned from other fields including agronomy, forestry, petroleum exploration, and sanitary engineering. Current research suggests that it is not a question if whether structural SCMs "work" but more of a question of to what degree and with what longevity (Heasom et al., 2006; Davis et al., 2008; Emerson and Traver, 2008). There is considerably less known about the performance of nonstructural practices for stormwater treatment, partly because their application has been uneven around the country and it remains fairly low in comparison to structural stormwater practices.

Finally, defined maintenance protocols for SCMs can be nonexistent, emerging, or fully available. SCMs differ widely in the extent to which they can be considered permanent solutions. For those SCMs that work on the individual site scale on private property, such as rain gardens, local stormwater managers may be reluctant to adopt such practices due to concerns about their ability to enforce private landowners to conduct maintenance over time. Similarly, those SCMs that involve local government decisions (such as education, residential stewardship practices, zoning, or street sweeping) may be less attractive because governments are likely to change over time.

The following sections contain more detailed information about the individual SCMs listed in Tables 5-1 and 5-2, including the operating unit processes, the pollutants treated, the typical performance for both runoff and pollutant reduction, the strengths and weaknesses, maintenance and inspection requirements, and the largest sources of variability and uncertainty.

SCM	Hydrologic Control Objectives	Water Quality Objectives	Available Design Guidance	Performance Studies Available	Defined Maintenance Protocols
Product Substitution	NA	Prevention	NA	Limited	NA
Watershed and Land-Use Planning	All objectives	Prevention	Available	Limited	Yes
Conservation of Natural Areas	Prevention	Prevention	Available	None	Yes
Impervious Cover Minimization	Prevention and reduction	Prevention	Available	Limited	No
Earthwork Minimization	Prevention	Prevention	Emerging	Limited	Yes
Erosion and Sediment Control	Prevention and reduction	Prevention and removal	Available	Limited	Yes
Reforestation and Soil Conservation	Prevention and reduction	Prevention and removal	Emerging	None	No
Pollution Prevention SCMs for Hotspots	NA	Prevention	Emerging	Very few	No
Runoff Volume Reduction—Rainwater harvesting	Reduction	NA	Emerging	Limited	Yes
Runoff Volume Reduction—Vegetated (Green Roofs, Bioretention Bioinfiltration, Bioswales)	Reduction and some peak attenuation	Removal	Available	Limited	Emerging
Runoff Volume Reduction—Subsurface (Infiltration Trenches, Pervious Pavements)	Reduction and some peak attenuation	Removal	Available	Limited	Yes
Peak Reduction and Runoff Treatment (Stormwater Wetlands, Dry/Wet Ponds)	Peak attenuation	Removal	Available	Adequate	Yes
Runoff Treatment (Sand Filters, Manufactured Devices)	None	Removal	Emerging	Adequate— sand filters Limited— manufactured devices	Yes
Aquatic Buffers and Managed Floodplains	NA	Prevention and removal	Available	Very few	Emerging
Stream Rehabilitation	NA	Prevention and removal	Emerging	Limited	Unknown
Municipal Housekeeping (Street Sweeping/Storm- Drain Cleanouts)	NA	Removal	Emerging	Limited	Emerging
Illicit Discharge Detection/Elimination	NA	Prevention and removal	Available	Very few	No
Stormwater Education Residential Stewardship	Prevention Prevention	Prevention Prevention	Available Emerging	Very few Very few	Emerging No

TABLE 5-2 Current Understanding of Stormwater Control Measure Capabilities

Note: Nonstructural SCMs are in italics.

Key:		
Hydrologic Objective	Water Quality Objective	Available Design Guidance?
Prevention: Prevents generation of	Prevention: Prevents generation,	Available: Basic design or
runoff	accumulation, or wash-off of	implementation guidance is available in
Reduction: Reduces volume of runoff	pollutants and/or reduces runoff	most areas of the country are readily
Treatment: Delays runoff delivery	volume	available
only	Removal: Reduces pollutant	Emerging: Design guidance is still
Peak Attenuation : Reduction of peak	concentrations in runoff by physical,	under development, is missing in many
flows through detention	chemical, or biological means	parts of the country, or requires more
		performance data
Performance Data Available?	Defined Maintenance Protocol?	Notes:
Very Few: Handful of studies, not	No: Extremely limited understanding	NA: Not applicable for the SCM
enough data to generalize about SCM	of procedures to maintain SCM in	
performance	the future	
Limited: Numerous studies have been	Emerging: Still learning about how	
done, but results are variable or	to maintain the SCM	
inconsistent	Yes: Solid understanding of	
Adequate: Enough studies have been	maintenance for future SCM needs	
done to adequately define performance		

Product Substitution

Product substitution refers to the classic pollution prevention approach of reducing the emissions of pollutants available for future wash-off into stormwater runoff. The most notable example is the introduction of unleaded gasoline, which resulted in an order-of-magnitude reduction of lead levels in stormwater runoff in a decade (Pitt et al., 2004a,b). Similar reductions are expected with the phase-out of methyl tert-butyl ether (MTBE) additives in gasoline. Other examples of product substitution are the ban on coal-tar sealants during parking lot renovation that has reduced PAH runoff (Van Metre et al., 2006), phosphorus-free fertilizers that have measurably reduced phosphorus runoff to Minnesota lakes (Barten and Johnson, 2007), the painting of galvanized metal surfaces, and alternative rooftop surfaces (Clark et al., 2005). Given the importance of coal power plant emissions in the atmospheric deposition of nitrogen and mercury, it is possible that future emissions reductions for such plants may result in lower stormwater runoff concentrations for these two pollutants.

The level of control afforded by product substitution is quite high if major reductions in emissions or deposition can be achieved. The difficulty is that these reductions require action in another environmental regulatory arena, such as air quality, hazardous waste, or pesticide regulations, which may not see stormwater quality as a core part of their mission.

Watershed and Land-Use Planning

Communities can address stormwater problems by making land-use decisions that change the location or quantity of impervious cover created by new development. This can be accomplished through zoning, watershed plans, comprehensive land-use plans, or Smart Growth incentives. The unit process that is managed is the amount of impervious cover, which is strongly related to various residential and commercial zoning categories (Cappiella and Brown, 2000). Numerous techniques exist to forecast future watershed impervious cover and its probable impact on the quality of aquatic resources (see the discussion of the Impervious Cover Model in Chapter 3; CWP, 1998a; MD DNR, 2005). Using these techniques and simple or complex simulation models, planners can estimate stormwater flows and pollutant loads through the watershed planning process and alter the location or intensity of development to reduce them.

The level of control that can be achieved by watershed and land-use planning is theoretically high, but relatively few communities have aggressively exercised it. The most common application of downzoning has been applied to watersheds that drain to drinking water reservoirs (Kitchell, 2002). The strength of this practice is that it has the potential to directly address the underlying causes of the stormwater problem rather than just treating its numerous symptoms. The weakness is that local decisions on zoning and Smart Growth are reversible and often driven by other community concerns such as economic development, adequate infrastructure, and transportation. In addition, powerful consumer and market forces often have promoted low-density sprawl development. Communities that use watershed-based zoning often require a compelling local environmental goal, since state and federal regulatory authorities have traditionally been extremely reluctant to interfere with the local land-use and zoning powers.

Conservation of Natural Areas

Natural-area conservation protects natural features and environmental resources that help maintain the predevelopment hydrology of a site by reducing runoff, promoting infiltration, and preventing soil erosion. Natural areas are protected by a permanent conservation easement prescribing allowable uses and activities on the parcel and preventing future development. Examples include any areas of undisturbed vegetation preserved at the development site, including forests, wetlands, native grasslands, floodplains and riparian areas, zero-order stream channels, spring and seeps, ridge tops or steep slopes, and stream, wetland, or shoreline buffers. In general, conservation should maximize contiguous area and avoid habitat fragmentation.

While natural areas are conserved at many development sites, most of these requirements are prompted by other local, state, and federal habitat protections, and are not explicitly designed or intended to provide runoff reduction and stormwater treatment. To date, there are virtually no data to quantify the runoff reduction and/or pollutant removal capability of specific types of natural area conservation, or the ability to explicitly link them to site design.

Impervious Cover Reduction

A variety of practices, some of which fall under the broader term "better site design," can be used to minimize the creation of new impervious cover and disconnect or make more permeable the hard surfaces that are needed (Nichols et al., 1997; Richman, 1997; CWP, 1998a). A list of some common impervious cover reduction practices for both residential and commercial areas is provided below. Elements of Better Site Design: Single-Family Residential

- Maximum residential street width
- Maximum street right-of-way width
- Swales and other stormwater practices can be located within the right-of-way
- o Maximum cul-de-sac radius with a bioretention island in the center
- Alternative turnaround options such as hammerheads are acceptable if they reduce impervious cover
- Narrow sidewalks on one side of the street (or move pedestrian pathways away from the street entirely)
- Disconnect rooftops from the storm-drain systems
- Minimize driveway length and width and utilize permeable surfaces
- Allow for cluster or open-space designs that reduce lot size or setbacks in exchange for conservation of natural areas
- o Permeable pavement in parking areas, driveways, sidewalks, walkways, and patios

Elements of Better Site Design: Multi-Family Residential and Commercial

- o Design buildings and parking to have multiple levels
- Store rooftop runoff in green roofs, foundation planters, bioretention areas, or cisterns
- Reduce parking lot size by reducing parking demand ratios and stall dimensions
- Use landscaping areas, tree pits, and planters for stormwater treatment
- Use permeable pavement over parking areas, plazas, and courtyards

CWP (1998a) recommends minimum or maximum geometric dimensions for subdivisions, individual lots, streets, sidewalks, cul-de-sacs, and parking lots that minimize the generation of needless impervious cover, based on a national roundtable of fire safety, planning, transportation and zoning experts. Specific changes in local development codes can be made using these criteria, but it is often important to engage as many municipal agencies that are involved in development as possible in order to gain consensus on code changes.

At the present time, there is little research available to define the runoff reduction benefits of these practices. However, modeling studies consistently show a 10 to 45 percent reduction in runoff compared to conventional development (CWP, 1998b,c, 2002). Several monitoring studies have documented a major reduction in stormwater runoff from development sites that employ various forms of impervious cover reduction and LID in the United States and Australia (Coombes et al., 2000; Philips et al., 2003; Cheng et al., 2005) compared to those that do not.

Unfortunately, better site design has been slowly adopted by local planners, developers, designers, and public works officials. For example, although the project pictured in Figure 5-6 has been very successful in terms of controlling stormwater, the better-site-design principles used have not been widely adopted in the Seattle area. Existing local development codes may discourage or even prohibit the application of environmental site design practices, and many engineers and plan reviewers are hesitant to embrace them. Impervious cover reduction must be incorporated at the earliest stage of site layout and design to be effective, but outdated development codes in many communities can greatly restrict the scope of impervious cover reduction (see Chapter 2). Finally, the performance and longevity of impervious cover reduction are dependent on the infiltration capability of local soils, the intensity of development, and the future management actions of landowners.

FIGURE 5-6 110th Street, Seattle, part of the Natural Drainage Systems Project. This location exhibits several elements of impervious cover reduction. In particular, vegetated swales were installed and curbs and gutters removed. There are sidewalks on only one side of the street, and they are separated from the road by the swales. The residences' rooftops have been disconnected from the storm-drain systems and are redirected into the swales. SOURCE: Seattle Public Utilities.

Earthwork Minimization

This source control measure seeks to limit the degree of clearing and grading on a development site in order to prevent soil compaction, conserve soils, prevent erosion from steep slopes, and protect zero-order streams. This is accomplished by (1) identifying key soils, drainage features, and slopes to protect and then (2) establishing a limit of disturbance where construction equipment is excluded. This element is an important, but often under-utilized component of local erosion and sediment control plans.

Numerous researchers have documented the impact of mass grading, clearing, and the passage of construction equipment on the compaction of soils, as measured by increase in bulk density, declines in soil permeability, and increases in the runoff coefficient (Lichter and Lindsey, 1994; Legg et al., 1996; Schueler, 2001a,b; Gregory et al., 2006). Another goal of earthwork minimization is to protect zero-order streams, which are channels with defined banks that emanate from a hollow or ravine with convergent contour lines (Gomi et al., 2002). They represent the uppermost definable channels that possess temporary or intermittent flow. Functioning zero-order channels provide major watershed functions, including groundwater recharge and discharge (Schollen et al., 2006; Winter, 2007), important nutrient storage and transformation functions (Bernot and Dodds, 2005; Groffman et al., 2005), storage and retention

of eroded hill-slope sediments (Meyers, 2003), and delivery of leaf inputs and large woody debris. Compared to high-order network streams, zero-order streams are disproportionately disturbed by mass grading, enclosure, or channelization (Gomi et al., 2002; Meyer, 2003).

The practice of earthwork minimization is not widely applied across the country. This is partly due to the limited performance data available to quantify its benefits, and the absence of local or national design guidance or performance benchmarks for the practice.

Erosion and Sediment Control

Erosion and sediment control predates much of the NPDES stormwater permitting program. It consists of the temporary installation and operation of a series of structural and nonstructural practices throughout the entire construction process to minimize soil erosion and prevent off-site delivery of sediment. Because construction is expected to last for a finite and short period of time, the design standards are usually smaller and thus riskier (25-year versus the 100-year storm). By phasing construction, thereby limiting the exposure of bare earth at any one time, the risk to the environment is reduced significantly.

The basic practices include clearing limits, dikes, berms, temporary buffers, protection of drainage-ways, soil stabilization through hydroseeding or mulching, perimeter controls, and various types of sediment traps and basins. All plans have some component that requires filtration of runoff crossing construction areas to prevent sediment from leaving the site. This usually requires a sediment collection system including, but not limited to, conventional settling ponds and advanced sediment collection devices such as polymer-assisted sedimentation and advanced sand filtration. Silt fences are commonly specified to filter distributed flows, and they require maintenance and replacement after storms as shown in Figure 5-7. Filter systems are added to inlets until the streets are paved and the surrounding area has a cover of vegetation (Figure 5-8). Sedimentation basins (Figure 5-9) are constructed to filter out sediments through rock filters, or are equipped with floating skimmers or chemical treatment to settle out pollutants. Other common erosion and sediment control measures include temporary seeding and rock or rigged entrances to construction sites to remove dirt from vehicle tires (see Figure 5-10).

FIGURE 5-7 A functioning silt fence (left) and an improperly maintained silt fence (right). SOURCES: EPA NPDES Menu of BMPs and Robert Traver.

FIGURE 5-8 Sediment filter left in place after construction. SOURCE: Robert Traver.

Sediment basins are used to trap sediments and temporarily detain runoff on larger construction sites FIGURE 5-9 Sediment basin. SOURCE: EPA NPDES Menu of BMPs.

FIGURE 5-10 Rumble strips to remove dirt from vehicle tires. SOURCE: Laura Ehlers.

Control of the runoff's erosive potential is a critical element. Most erosion and sediment control manuals provide design guidance on the capacity and ability of swales to handle runoff without eroding, on the design of flow paths to transport runoff at non-erosive velocities, and on the dissipation of energy at pipe outlets. Examples include rock energy dissipaters, level spreaders (see Figure 5-11), and other devices.

Box 5-3 provides a comprehensive list of recommended construction SCMs. The reader is directed to reviews by Brown and Caraco (1997) and Shaver et al. (2007) for more information. Although erosion and sediment control practices are temporary, they require constant operation and maintenance during the complicated sequence of construction and after major storm events. It is exceptionally important to ensure that practices are frequently inspected and repaired and that sediments are cleaned out. Erosion and sediment control are widely applied in many communities, and most states have some level of design guidance or standards and specifications. Nonetheless, few communities have quantified the effectiveness of a series of construction SCMs applied to an individual site, nor have they clearly defined performance benchmarks for individual practices or their collective effect at the site. In general, there has been little monitoring in the past few decades to characterize the performance of construction SCMs, although a few notable studies have been recently published (e.g., Line and White, 2007). Box 5-4 describes the effectiveness of filter fences and filter fences plus grass buffers to reduce sediment loadings from construction activities and the resulting biological impacts.

FIGURE 5-11 Level spreader. SOURCE: Robert Traver.

BOX 5-3

Recommended Construction Stormwater Control Measures

- 1. As the top priority, emphasize construction management SCMs as follows:
- Maintain existing vegetation cover, if it exists, as long as possible.
- Perform ground-disturbing work in the season with smaller risk of erosion, and work off disturbed ground in the higher risk season.
- Limit ground disturbance to the amount that can be effectively controlled in the event of rain.
- Use natural depressions and planning excavation to drain runoff internally and isolate areas of potential sediment and other pollutant generation from draining off the site, so long as safe in large storms.
- Schedule and coordinate rough grading, finish grading, and erosion control application to be completed in the shortest possible time overall and with the shortest possible lag between these work activities.
- 2. Stabilize with cover appropriate to site conditions, season, and future work plans. For example:
- Rapidly stabilize disturbed areas that could drain off the site, and that will not be worked again, with
 permanent vegetation supplemented with highly effective temporary erosion controls until
 achievement of at least 90 percent vegetative soil cover.
- Rapidly stabilize disturbed areas that could drain off the site, and that will not be worked again for more than three days, with highly effective temporary erosion controls.
- If at least 0.1 inch of rain is predicted with a probability of 40 percent or more, before rain falls stabilize or isolate disturbed areas that could drain off the site, and that are being actively worked or will be within three days, with measures that will prevent or minimize transport of sediment off the property.

3. As backup for cases where all of the above measures are used to the maximum extent possible but sediments still could be released from the site, consider the need for sediment collection systems including, but not limited to, conventional settling ponds and advanced sediment collection devices such as polymer-assisted sedimentation and advanced sand filtration.

4. Specify emergency stabilization and/or runoff collection (e.g., using temporary depressions) procedures for areas of active work when rain is forecast.

5. If runoff can enter storm drains, use a perimeter control strategy as backup where some soil exposure will still occur, even with the best possible erosion control (above measures) or when there is discharge to a sensitive waterbody.

6. Specify flow control SCMs to prevent or minimize to the extent possible:

- · Flow of relatively clean off-site water over bare soil or potentially contaminated areas;
- · Flow of relatively clean intercepted groundwater over bare soil or potentially contaminated areas;
- High velocities of flow over relatively steep and/or long slopes, in excess of what erosion control coverings can withstand; and
- Erosion of channels by concentrated flows, by using channel lining, velocity control, or both.

7. Specify stabilization of construction entrance and exit areas, provision of a nearby tire and chassis wash for dirty vehicles leaving the site with a wash water sediment trap, and a sweeping plan.

- 8. Specify construction road stabilization.
- 9. Specify wind erosion control.

10. Prevent contact between rainfall or runoff and potentially polluting construction materials, processes, wastes, and vehicle and equipment fluids by such measures as enclosures, covers, and containments, as well as berming to direct runoff.

BOX 5-4

Receiving Water Impacts Associated with Construction Site Discharges

The following is a summary of a recent research project that investigated in-stream biological conditions downstream of construction sites having varying levels of erosion controls (none, the use of filter fences, and filter fences plus grass buffers) for comparison. The project title is *Studies to Evaluate the Effectiveness of Current BMPs in Controlling Stormwater Discharges from Small Construction Sites* and was conducted for the Alabama Water Resources Research Institute, Project 2001AL4121B, by Drs. Robert Angus, Ken Marion, and Melinda Lalor of the University of Alabama at Birmingham. The initial phase of the project, described below, was completed in 2002. While this case study is felt to be representative of many sites across the United States, there are other examples of where silt fences have been observed to be more effective (e.g., Barrett et al., 1998).

Methods

This study was conducted in the upper Cahaba River watershed in north central Alabama, near Birmingham. The study areas had the following characteristics. (1) Topography and soil types representative of the upland physiographic regions in the Southeast (i.e., southern Appalachian and foothill areas); thus, findings from this study should be relevant to a large portion of the Southeast. (2) The rainfall amounts and intensities in this region are representative of many areas of the Southeast and (3) the expanding suburbs of the Birmingham metropolitan area are rapidly encroaching upon the upper Cahaba River and its tributaries. Stormwater runoff samples were manually collected from sheet flows above silt fences, and from points below the fence within the vegetated buffer. Water was sampled during "intense" (≥1 inch/hour) rain events. The runoff samples were analyzed for turbidity, particle size distribution (using a Coulter Counter Multi-Sizer IIe), and total solids (dissolved solids plus suspended/non-filterable solids). Sampling was only carried out on sites with properly installed and well-maintained silt fences, located immediately upgrade from areas with good vegetative cover.

Six tributary or upper mainstream sites were studied to investigate the effects of sedimentation from construction sites on both habitat quality and the biological "health" of the aquatic ecosystem (using benthic macroinvertebrates and fish). EPA's Revision to Rapid Bioassessment Protocols for Use in Streams and Rivers was used to assess the habitat quality at the study sites. Each site was assessed in the spring to evaluate immediate effects of the sediment, and again during the following late summer or early fall to evaluate delayed effects.

Results

Effectiveness of Silt Fences. Silt fences were found to be better than no control measures at all, but not substantially. The mean counts of small particles ($<5 \mu$ m) below the silt fences were about 50 percent less than that from areas with no erosion control measures, even though the fences appeared to be properly installed and in good order. However, the variabilities were large and the difference between the means was not statistically significant. For every variable measured, the mean values of samples taken below silt fences were significantly higher (p < 0.001) than samples collected from undisturbed vegetated control sites collected nearby and at the same time. These data therefore indicate that silt fences are only marginally effective at reducing soil particulates in runoff water.

<u>Effectiveness of Filter Fences with Vegetated Buffers.</u> Runoff samples were also collected immediately below filter fences, and below filter fences after flow over buffers having 5, 10, and 15 feet of dense (intact) vegetation. Mean total solids in samples collected below silt fences and a 15-foot-wide vegetated buffer zone were about 20 percent lower, on average, than those samples collected only below the silt fence. The installation of filter fences above an intact, good vegetated buffer removes sediment from construction site runoff more effectively than with the use of filter fences alone.

continues next page

BOX 5-4 Continued

Biological Metrics Sensitive to Sedimentation Effects (Fish). Analysis of the fish biota indicates that various metrics used to evaluate the biological integrity of the fish community also are affected by highly sedimented streams. As shown in Figure 5-12, the overall composition of the population, as quantified by the Index of Biotic Integrity (IBI) is lower; the proportion and biomass of darters, a disturbance-sensitive group, is lower; the proportion and biomass of sunfish is higher; the Shannon-Weiner diversity index is lower; and the number of disturbance-tolerant species is higher as mean sediment depth increases.

FIGURE 5-12 Association between two fish metrics and amount of stream sediment. NOTE: The IBI is based on numerous characteristics of the fish population. The percent relative abundance of darters is the percentage of darters to all the fish collected at a site. SOURCE: Alabama WRRI.

Benthic Macroinvertebrates. A number of stream benthic macroinvertebrate community characteristics were also found to be sensitive to sedimentation. Metrics based on these characteristics differ greatly between sediment-impacted and control sites (Figure 5-13). Some of the metrics that appear to reflect sediment-associated stresses include the Hilsenhoff Biotic Index (HBI), a variation of the EPT index (percent EPT minus Baetis), and the Sorensen Index of Similarity to a reference site. The HBI is a weighted mean tolerance value; high HBI values indicate sites dominated by disturbance-tolerant macroinvertebrate taxa. The EPT% index is the percent of the collection represented by organisms in the generally disturbance-sensitive orders *Ephemeroptera, Plecoptera,* and *Trichoptera*. Specimens of the genus *Baetis* were not included in the index as they are relatively disturbance-tolerant. The HBI and the EPT indices also show positive correlations to several other measures of disturbance, such as percent of the watershed altered by development.

Reforestation and Soil Compost Amendments

This set of practices seeks to improve the quality of native vegetation and soils present at the site. Depending on the ecoregion, this may involve forest, prairie, or chapparal plantings, tilling, and amending compacted soils to improve their hydrologic properties.

The goal is to maintain as much predevelopment hydrologic function at a development site as possible by retaining canopy interception, duff/soil layer interception, evapotranspiration, and surface infiltration. The basic methods to implement this practice are described in Cappiella et al. (2006), Pitt et al. (2005), Chollak and Rosenfeld (1998), and Balusek (2003).

At this time, there are few monitoring data to assess the degree to which land reforestation or soil amendments can improve the quality of stormwater runoff at a particular development site, apart from the presumptive watershed research that has shown that forests with undisturbed soils have very low rates of surface runoff and extremely low levels of pollutants in runoff (Singer and Rust, 1975; Johnson et al., 2000; Chang, 2006). More data are needed on the hydrologic properties of urban forests and soils whose ecological functions are stressed or degraded by the urbanization process (Pouyat et al., 1995, 2007).

Pollution Prevention SCMs for Stormwater Hotspots

Certain classes of municipal and industrial operations are required to maintain a series of pollution prevention practices to prevent or minimize contact of pollutants with rainfall and runoff. Pollution prevention practices involve a wide range of operational practices at a site related to vehicle repairs, fueling, washing and storage, loading and unloading areas, outdoor storage of materials, spill prevention and response, building repair and maintenance, landscape and turf management, and other activities that can introduce pollutants into the stormwater system (CWP, 2005). Training of personnel at the affected area is needed to ensure that industrial and municipal managers and employees understand and implement the correct stormwater pollution prevention practices needed for their site or operation.

Examples of municipal operations that may need pollution prevention plans include public works yards, landfills, wastewater treatment plants, recycling and solid waste transfer stations, maintenance depots, school bus and fleet storage and maintenance areas, public golf courses, and ongoing highway maintenance operations. The major industrial categories that require stormwater pollution prevention plans were described in Table 2-3. Both industrial and municipal operations must develop a detailed stormwater pollution prevention plan, train employees, and submit reports to regulators. Compliance has been a significant issue with this program in the past, particularly for small businesses (Duke and Augustenberg, 2006; Cross and Duke, 2008) Recently filed investigations of stormwater hotspots indicate many of these operations are not fully implementing their stormwater pollution prevention plans, and a recent GAO report (2007) indicates that state inspections and enforcement actions are extremely rare.

The goal of pollution prevention is to prevent contact of rainfall or stormwater runoff with pollutants, and it is an important element of the post-construction stormwater plan. However, with the exception of a few industries such as auto salvage yards (Swamikannu, 1994), basic research is lacking on how much greater event mean concentrations are at municipal and industrial stormwater hotspots compared to other urban land uses. In addition, little is presently known about whether aggressive implementation of stormwater pollution prevention plans actually can reduce stormwater pollutant concentrations at hot spots.

Runoff Volume Reduction—Rainwater Harvesting

A primary goal of stormwater management is to reduce the volume of runoff from impervious surfaces. There are several classes of SCMs that can achieve this goal, including rainwater harvesting systems, vegetated SCMs that evapotranspirate part of the volume, and infiltration SCMs. For all of these measures, the amount of runoff volume to be captured depends on watershed goals, site conditions including climate, upstream nonstructural practices employed, and whether the chosen SCM is the sole management measure or part of a treatment train. Generally, runoff-volume-reduction SCMs are designed to handle at least the first flush from impervious surfaces (1 inch of rainfall). In Pennsylvania, control of the 24-hour, two-year storm volume (about 8 cm) is considered the standard necessary to protect stream-channel geomorphology, while base flow recharge and the first flush can be addressed by capturing a much smaller volume of rain (1-3 cm). Where both goals must be met, the designer is permitted to either oversize the volume reduction device to control the larger volume, or build a smaller device and use it in series with an extended detention basin to protect the stream geomorphology (PaDEP, 2006). Some designers have reported that in areas with medium to lower percentage impervious surfaces they are able to control up to the 100-year storm by enlarging runoffvolume-reduction SCMs and using the entire site. In retrofit situations, capture amounts as small as 1 cm are a distinct improvement. It should be noted that there are important, although indirect, water quality benefits of all runoff-volume-reduction SCMs-(1) the reduction in runoff will reduce streambank erosion downstream and the concomitant increases in sediment load, and (2) volume reductions lead to pollutant load reductions, even if pollutant concentrations in stormwater are not decreased.

Rainwater harvesting systems refer to use of captured runoff from roof tops in rain barrels, tanks, or cisterns (Figures 5-14 and 5-15). This SCM treats runoff as a resource and is one of the few SCMs that can provide a tangible economic benefit through the reduction of treated water usage. Rainwater harvesting systems have substantial potential as retrofits via the use of rain barrels or cisterns that can replace lawn or garden sprinkling systems. Use of this SCM to provide gray water within buildings (e.g., for toilet flushing) is considerably more complicated due to the need to construct new plumbing and obtain the necessary permits.

The greatest challenge with these systems is the need to use the stored water and avoid full tanks, since these cannot be responsive in the event of a storm. That is, these SCMs are effective only if the captured runoff can be regularly used for some grey water usage, like car washing, toilet flushing, or irrigation systems (golf courses, landscaping, nurseries). In some areas it might be possible to use the water for drinking, showering, or washing, but treatment to potable water quality would be required. Sizing of the required storage is dependent on the climate patterns, the amount of impervious cover, and the frequency of water use. Areas with frequent rainfall events require less storage as long as the water is used regularly, while areas with cold weather will not be able to utilize the systems for irrigation in the winter and thus require larger storage.

FIGURE 5-14 Rainwater harvesting tanks at a

FIGURE 5-15 A Schematic of rainwater harvesting . SOURCE: PaDEP (2006).

Starbucks in Austin, Texas. SOURCE: Laura Ehlers. harvesting. SOURCE: PaDEP (2006) One substantial advantage of these systems is their ability to reduce water costs for the

user and the ability to share needs. An example of this interaction is the Pelican Hill development in Irvine, California, where excess runoff from the streets and houses is collected in enormous cisterns and used for watering of a nearby golf course. Furthermore, compared to other SCMs, the construction of rainwater harvesting facilities provide a long-term benefit with minimal maintenance cost, although they do require an upfront investment for piping and storage tanks.

Coombes et al. (2000) found that rainwater harvesting achieved a 60 to 90 percent reduction in runoff volume; in general, few studies have been conducted to determine the performance of these SCMs. It should be noted that rainwater harvesting systems do collect airborne deposition and acid rain.

Runoff Volume Reduction—Vegetated

A large and very promising class of SCMs includes those that use infiltration and evapotranspiration via vegetation to reduce the volume of runoff. These SCMs also directly address water quality of both surface water and groundwater by reducing streambank erosion, capturing suspended solids, and removing other pollutants from stormwater during filtration through the soil (although the extent to which pollutants are removed depends on the specific pollutant and the local soil chemistry). Depending on their design, these SCMs can also reduce peak flows and recharge groundwater (if they infiltrate). These SCMs can often be added as retrofits to developed areas by installing them into existing lawns, rights of way, or traffic islands. They can add beauty and property value.

Flow volume is addressed by this SCM group by first capturing runoff, creating a temporary holding area, and then removing the stored volume through infiltration and evapotranspiration. Examples include bioswales, bioretention, rain gardens, green roofs, and bioinfiltration. Swales refer to grassy areas on the side of the road that convey drainage. These were first designed to move runoff away from paved areas, but can now be designed to achieve a certain contact time with runoff so as to promote infiltration and pollutant removal (see Figure 5-

Washer 4 Cold

0

Expansion Tank 16). Bioretention generally refers to a constructed sand filter with soil and vegetation growing on top to which stormwater runoff from impervious surfaces is directed (Figure 5-17). The original rain garden or bioretention facilities were constructed with a fabric at the bottom of the prepared soil to prevent infiltration and instead had a low-level outflow at the bottom. Green roofs (Figure 5-18) are very similar to bioretention SCMs. They tend to be populated with a light expanded shale-type soil and succulent plants chosen to survive wet and dry periods. Finally, bioinfiltration is similar to bioretention but is better engineered to achieve greater infiltration (Figure 5-19). All of these devices are usually at the upper end of a treatment train and designed for smaller storms, which minimizes their footprint and allows for incorporation within existing infrastructure (such as traffic control devices and median strips). This allows for distributed treatment of the smaller volumes and distributed volume reduction.

FIGURE 5-16 Vegetated swale. SOURCE: PaDEP (2006).

FIGURE 5-17 Bioretention during a storm event at the University of Maryland. SOURCE: Reprinted, with permission, from Davis et al. (2008). Copyright 2008 by the American Society of Civil Engineers.

FIGURE 5-18 City Hall in the center of Chicago's downtown was retrofitted with a green roof to reduce the heat island effect, remove airborne pollutants, and attenuate stormwater flows as a demonstration of innovative stormwater management in an ultra-urban setting. SOURCE: Conservation Design Forum.

FIGURE 5-19 Retrofit bioinfiltration at Villanova University immediately following a storm event. SOURCE: Robert Traver.

These SCMs work by capturing water in a vegetated area, which then infiltrates into the soil below. They are primarily designed to use plant material and soil to evapotranspirate the runoff over several days. A shallow depth of ponding is required, since the inflows may exceed the possible infiltration ability of the native soil. This ponding is maintained above an engineered sandy soil mixture and is a surface-controlled process (Hillel, 1998). Early in the storm, the soil moisture potential creates a suction process that helps draw water into the SCM. This then changes to a steady rate that is "practically equal to the saturated hydraulic conductivity" of the subsurface (Hillel, 1998). The hydrologic design goal should be to maximize the volume of water that can be held in the soil, which necessitates consideration of the soil hydraulic conductivity (which varies with temperature), climate, depth to groundwater, and time to drain. Usually these devices are designed to empty between 24 and 72 hours after a storm event. In some cases (usually bioretention), these SCMs have an underdrain.

The choice of vegetation is an important part of the design of these SCMs. Many sites where infiltration is desirable have highly sandy soils, and the vegetation has to be able to endure both wet and dry periods. Long root growths are desired to promote infiltration (Barr Engineering Co., 2001), and plants that attract birds can reduce the insect population. Bioretention cells may be wet for longer periods than bioinfiltration sites, requiring different plants. Denser plantings or "thorns" may be needed to avoid the destruction caused by humans and animals taking shortcuts through the beds.

The pollutant removal mechanism operating for volume-reduction SCMs are different for each pollutant type, soil type, and volume-reduction mechanism. For bioretention and SCMs using infiltration, the sedimentation and filtration of suspended solids in the top layers of the soil are extremely efficient. Several studies have shown that the upper layers of the soil capture metals, particulate nutrients, and carbon (Pitt, 1996; Deschesne et al., 2005; Davis et al., 2008). The removal of dissolved nutrients from stormwater is not as straightforward. While ammonia is caught by the top organic layer, nitrate is mobile in the soil column. Some bioretention systems have been built to hold water in the soil for longer periods in order to create anaerobic conditions that would promote denitrification (Hunt and Lord, 2006a). Phosphorus removal is related to the amount of phosphorus in the original soil. Some studies have shown that bioretention cells built with agricultural soils increased the amount of phosphorus released. Chlorides pass through the system unchecked (Ermilio and Traver, 2006), while oils and greases are easily removed by the

organic layer. Hunt et al. (2008) have reported in studies in North Carolina that the drying cycle appears to kill off bacteria. Temperature is not usually a concern as most storms do not overflow these devices. Green roofs collect airborne deposition and acid rain and may export nutrients when they overflow. However, this must be tempered by the fact that in larger storms, most natural lands would produce nutrients.

A group of new research studies from North America and Australia have demonstrated the value of many of these runoff-volume-reduction practices to replicate predevelopment hydrology at the site. The results from 11 recent studies are given in Table 5-3, which shows the runoff reduction capability of bioretention. As can be seen, the reduction in runoff volume achieved by these practices is impressive—ranging from 20 to 99 percent with a median reduction of about 75 percent. Box 5-5 discusses the excellent performance of the bioswales installed during Seattle's natural drainage systems project (see also Horner et al., 2003; Jefferies, 2004; Stagge, 2006). Bioinfiltration has been less studied, but one field study concluded that close to 30 percent of the storm volume was able to be removed by bioinfiltration (Sharkey, 2006). A very recent case study of bioinfiltration is provided in Box 5-6, which demonstrates that the capture of small storms through these SCMs is extremely effective in areas where the majority of the rainfall falls in smaller storms.

Bioretention Design	Location	Runoff Reduction	Reference
Infiltration	СТ	99%	Dietz and Clausen (2006)
	PA	86%	Ermilio and Traver (2006)
	FL	98%	Rushton (2002)
	AUS	73%	Lloyd et al. (2002)
Underdrain	ONT	40%	Van Seters et al. (2006)
	Model	30%	Perez-Perdini et al. (2005)
	NC	40 to 60%	Smith and Hunt (2007)
	NC	20 to 29%	Sharkey (2006)
	NC	52 to 56%	Hunt et al. (2008)
	NC	20 to 50%	Passeport et al. (2008)
	MD	52 to 65%	Davis et al. (2008)

 TABLE 5-3
 Volumetric Runoff Reduction Achieved by Bioretention

BOX 5-5 Bioswale Case Study 100th Street Cascade, Seattle, Washington

A recent example of the ability of SCMs to accomplish a variety of goals was illustrated for water quality swales in Seattle, Washington. As part of its Natural Drainage Systems Project, the City of Seattle retrofitted several blocks of an urban residential neighborhood with curbside vegetated swales. On NW 110th Street, the two-block-long system was developed as a cascade, due to the steep slope (6 percent). Twelve stepped, in-series biofilters were installed between properties and the road, each of which contains a storage area and an overflow weir. During rain events, the cells were designed to fill before emptying into the cell downstream. The soils in the bottom of each cell were over one foot thick and consisted of river rocks overlain by a swale mix. Native plants were chosen to vegetate the sides of the swale.

Extensive flow and water quality sampling occurred during 2003-2006 at the inflow and outflow of the biofilters as well as at references points elsewhere in the neighborhood that are not served by the new SCMs. Perhaps the most profound observation was that almost 50 percent of all rainfall flowing into the cascade was infiltrated, resulting in a corresponding reduction in runoff. Indeed, the cascade discharged measurable flow only during 49 of 235 storm events during the period. Depending on preceding conditions, the cascade was able to retain all of the flow for storms up to 1 inch in magnitude. In addition to the reduction in runoff affected by the swales, they also achieved significant peak flow reduction, as shown in

Figure 5-20. Many peak flow rates were entirely dampened, even those where the inflow peak rate was as high as 0.7 cfs.

FIGURE 5-20 Peak flow rates at the inlet and outlet of the cascade, as measured by two different devices: Campbell Scientific (left) and ISCO (right). SOURCE: Horner and Chapman (2007).

continues next page

BOX 5-5 Continued

Water quality data were also extremely encouraging, as shown in Table 5-4. For total suspended solids, influent concentration of 94 mg/L decreased to 29 mg/L at the outlet of the cascade. Similar percent removals were observed for total copper, total phosphorus, total zinc, and total lead (see Table 5-4). Soluble phosphorus concentrations tended to increase from the inflow of the cascade to the outflow.

TABLE 5-4 Typical Outflow Quality from the 100th Street Cascade. Permission pending.

Pollutant	Range (mg/L)
Total Suspended Solids	10–40
Total Nitrogen	0.6–1.4
Total Phosphorus	0.09–0.23
Soluble Reactive Phosphorus	0.02–0.05
Total Copper	0.004–0.008
Dissolved Copper	0.002–0.005
Total Zinc	0.04–0.11
Dissolved Zinc	0.02–0.06
Total Lead	0.002–0.007
Dissolved Lead	<0.001
Motor Oil	0.11–0.33

SOURCE: Horner and Chapman (2007).

Taking both measured concentrations and volume reduction into account, the cascade reduced the mass loadings for the contaminants by 60 percent to greater than 90 percent. As shown in Table 5-5, pollutants associated with sediments were reduced to the greatest extent, while dissolved pollutants were less readily removed.

TABLE 5-5 Pollutant Mass Loading Reductions at 100th Street Cascade. Permission pending.

Pollutant	Percent Reduction (90% Confidence Interval)
Total Suspended Solids	84 (72–92)
Total Nitrogen	63 (53–74)
Total Phosphorus	63 (49–74)
Total Copper	83 (77–88)
Dissolved Copper	67 (50–78)
Total Zinc	76 (46–85)
Dissolved Zinc	55 (21–70)
Total Lead	90 (84–94)
Motor Oil	92 (86–97)
	(0007)

SOURCE: Horner and Chapman (2007).

This level of performance was compared to other parts of the neighborhood treated with conventional ditch and pipe systems. The concentrations of almost all pollutants at the outlet of the 100th Cascade was significantly lower than a corresponding outlet at 120th Street. Furthermore, the ability of this SCM to attenuate peak flows and reduce runoff was remarkable.

BOX 5-6 SCM Evaluation Through Monitoring: Villanova Bioinfiltration SCM

The Bioinfiltration Traffic Island located on the campus of Villanova University in Southeastern Pennsylvania is part of the Villanova Urban Stormwater Partnership (VUSP) BMP Demonstration Park (see Figure 5-21). Originally funded through the Pennsylvania Growing Greener Program, and now through the State's 319 nonpoint source monitoring program, the site has been monitored continuously since soon after it was constructed in 2001. This monitoring has lead to a wealth of information about the performance and monitoring needs of infiltration SCMs.

FIGURE 5-21 Villanova Bioinfiltration Traffic Island SCM. SOURCE : Reprinted, with permission, from VUSP. Copyright by Villanova Urban Stormwater Partnership.

The SCM is a retrofit of an existing curb-enclosed traffic island in the parking lot of a university dormitory complex. The original grass area was dug out to approximately six feet. The soil removed during the excavation was then mixed with sand onsite to create a 50 percent sand–soil mixture. This soil mixture was then placed back into the excavation to a depth of approximately four feet, leaving a surface depression that is an average of two feet deep. Care was taken during construction to prevent any compaction of either the soil mixture or the undisturbed soil below. Placement of the mixed soil is shown in Figure 5-22.

During construction two curb cuts were created to direct runoff into the SCM. Creation of one of the cuts entailed filling and paving over an existing stormwater inlet to redirect the runoff that previously entered the stormwater drainage system of the parking lot. Another existing inlet was used to collect and redirect runoff into the SCM. Plants were chosen based on their ability to thrive in both extreme wet and dry conditions; the species chosen are commonly found on sand dunes where similar wet/dry conditions may exist.

The contributing watershed is approximately 50,000 square feet and is 52 percent impervious surfaces. The design goal of the SCM was for it to temporarily store the first inch of runoff. The one-inch capture depth is based on an analysis of local historical rainfall data showing that capture of the first inch of each storm would account for approximately 96 percent of the annual rainfall. This capture depth would therefore also account for the majority of the annual pollutant load coming from the drainage area.

FIGURE 5-22 Placement of the mixed soil in the basin. Notice the construction equipment being kept away from the basin to avoid potential compaction of the sub-base. SOURCE : Reprinted, with permission, from VUSP. Copyright by Villanova Urban Stormwater Partnership.

continues next page

BOX 5-6 Continued

Continuous monitoring over multiple years has increased our understanding of how this type of structure operates and its benefits. For example, Heasom et al. (2006) was able to produce a continuous hydrologic flow model of the site based on season. Figure 5-23 shows the variability of the infiltration rate on a seasonal basis, and the relationship between infiltration and temperature (Emerson and Traver, 2008). This work has also shown no statistical change in performance over the five-year monitoring period.

FIGURE 5-23 Seasonal Infiltration Rate. SOURCE: Reprinted, with permission, from Emerson and Traver (2008). Copyright 2008 by Journal of Irrigation and Drainage Engineering.

When examining the yearly performance of the site from a surface water standpoint, it is easily shown that on a regular basis approximately 50 to 60 percent of the runoff that reaches the site is removed from the surface waters, and 80 to 85 percent of the rainfall is infiltrated (Figure 5-24).

Copyright by Villanova Urban Stormwater Partnership.

The performance of the SCM during individual storm events was examined in 2005. Out of 77 rainfall events, overflow was recorded for only seven events. Generally overflow did not occur for rainfalls less than 1.95 inches except for one occasion. As the bowl volume is much less than this value, substantial infiltration must be occurring during the storm event. When one extreme 6-inch storm was recorded (Figure 5-25), it was surprising to note that infiltration occurred all during the storm event, as did some unexpected peak flow reduction. What is even more impressive is to examine the reduction in the duration of flows, which is directly related to downstream channel erosion (Figure 5-26). Clearly the bioinfiltration SCM exceeded its design goals.

35

Outflow 30 Inflow 25 Time Hours 20 15 10 5 0 0.00 0.20 0.40 0.60 0.80 1.00 Flow

FIGURE 5-25 October 2005 extreme storm event. storm event. SOURCE : Reprinted, with permission, from VUSP. Copyright by Villanova Urban Stormwater Partnership.

FIGURE 5-26 Flow duration curves, October 2005. SOURCE : Reprinted, with permission, from VUSP. Copyright by Villanova Urban Stormwater Partnership.

Research on this site is currently examining water quality benefits and groundwater interactions. When evaluating the pollutant removal of bioinfiltration, it is critical to consider flow volumes and pollutant levels together. For example, during many of the overflow events, there were higher nutrient levels leaving the SCM than entering due to the plants contained within the SCM. However, when the runoff volume reduction is considered, the total nitrogen and phosphorus removed from the influent is impressive (Davis et al., 2008). Water quality studies of the infiltrated water are still incomplete but generally show some conversion of nitrate to nitrite, and high chlorides from snow melt chemicals moving through the system. Nutrient levels are relatively low in the samples at the 8-foot depth.

The strengths of vegetated runoff-volume-reduction SCMs include the flexibility to utilize the drainage system as part of the treatment train. For example, bioswales can replace drainage pipes, green roofs can be installed on buildings, and bioretention can replace parking borders (Figure 5-27), thereby reducing the footprint of the stormwater system. Also, through the use of swales and reducing pipes and inlets, costs can be offset. Vegetated systems are more tolerant of the TSS collected, and their growth cycle maintains pathways for infiltration and prevents clogging. Freeze–thaw cycles also contribute to pathway maintenance. The aesthetic appeal of vegetated SCMs is also a significant strength.

Weaknesses include the dependence of these SCMs on native soil infiltration and the need to understand groundwater levels and karst geology, particularly for those SCMs designed to infiltrate. For bioinfiltration and bioretention, most failures occur early on and are caused by sedimentation and construction errors that reduce infiltration capacity, such as stripping off the topsoil and compacting the subsurface. Once a good grass cover is established in the contributing area, the danger of sedimentation is reduced. Nonetheless, the need to prevent sediment from overwhelming these structures is critical. The longevity of these SCMs and their vulnerability to toxic spills are a concern (Emerson and Traver, 2008), as is their failure to reduce chlorides. Finally, in areas where the land use is a hot spot, or where the SCM could potentially contaminate the groundwater supply, bioretention, non-infiltrating bioswales, and green roofs may be more suitable than infiltration SCMs.

The role of infiltration SCMs in promoting groundwater recharge deserves additional consideration. Although this is a benefit of infiltration SCMs in regions where groundwater levels are dropping, it may be undesirable in a few limited scenarios. For example, in the arid southwest contributions to base flow from irrigation have turned some dry ephemeral stream systems into perennial streams that support the growth of dense vegetation, which may be less desirable habitat for certain riparian species (like the Arroyo toad in Southern California). Infiltration SCMs could contribute to changing the flow regime in cases such as these. In most urban areas, there is so much impervious cover that it would be difficult to "overinfiltrate." Nonetheless, the use of infiltration SCMs will change local subsurface hydrology, and the ramifications of this—good and bad—should be considered prior to their installation.

FIGURE 5-27 North Carolina Retrofit Bioretention SCMs. SOURCE: Traver.

Maintenance of vegetated runoff-volume-reduction SCMs is relatively simple. A visit after a rainstorm to check for plant health, to check sediment buildup, and to see if the water is ponded can answer many questions. Maintenance includes trash pickup and seasonal removal of dead grasses and weeds. Sediment removal from pretreatment devices is required. Depending on the pollutant concentrations in the influent, the upper layer of organic matter may need to be removed infrequently to maintain infiltration and to prevent metal and nutrient buildup.

At the site level, the chief factors that lead to uncertainty are the infiltration performance of the soil, particular for the limiting subsoil layer, and how to predict the extent of pollutant removal. Traditional percolation tests are not effective to estimate the infiltration performance; rather, testing hydraulic conductivity is required. Furthermore, the infiltration rate varies depending on temperature and season (Emerson and Traver, 2008). Basing measurements on percent removal of pollutants is extremely misleading, since every site and storm generates different levels of pollutants. The extent of pollutant removal depends on land use, time between storms, seasons, and so forth. These factors should be part of the design philosophy for the site. Finally, it should also be pointed out that climate is a factor determining the effectiveness of some of these SCMs. For example, green roofs are more likely to succeed in areas having smaller, more frequent storms (like the Pacific Northwest) compared to areas subjected to less frequent, more intense storms (like Texas).

Runoff Volume Reduction—Subsurface

Infiltration is the primary runoff-volume-reduction mechanism for subsurface SCMs, such that much of the previous discussion is relevant here. Thus, like vegetated SCMs, these SCMs provide benefits for groundwater recharge, water quality, stream channel protection, peak flow reduction, capture of the suspended solids load, and filtration through the soil (Ferguson, 2002). Because these systems can be built in conjunction with paved surfaces (i.e., they are often buried under parking lots), the amount of water captured, and thus stream protection, may be higher than for vegetated systems. They also have lower land requirements than vegetated systems, which can be an enormous advantage when using these SCMs during retrofitting, as long as the soil is conducive to infiltration.

Similar to vegetated SCMs, this SCM group works primarily by first capturing runoff and then removing the stored volume through infiltration. The temporary holding area is made either of stone or using manufactured vaults. Examples include pervious pavement, infiltration trenches, and seepage pits (see Figures 5-28, 5-29, 5-30, 5-31, and 5-32). As with vegetated SCMs, a shallow depth of ponding is required, since the inflows may exceed the possible infiltration ability of the native soil. In this case, the ponding is maintained within a rock bed under a porous pavement or in an infiltration trench. These devices are usually designed to empty between 24 and 72 hours after the storm event.

The infiltration processes operating for these subsurface SCMs are similar to those for the vegetated devices previously discussed. Thus, much like for vegetated systems, the level of control achieved depends on the infiltration ability of the native soils, the percent of impervious surface area in the contributing watershed, land use contributing to the pollutant loadings, and climate. A large number of recent studies have found that permeable pavement can reduce runoff volume by anywhere from 50 percent (Rushton, 2002; Jefferies, 2004; Bean et al., 2007)

FIGURE 5-30 A retrofitted infiltration trench at Villanova University. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

FIGURE 5-29 Porous asphalt. SOURCE: SOURCE: PaDEP.

FIGURE 5-31 Pervious concrete at Villanova University. SOURCE: Reprinted, with permission from VUSP. Copyright by VUSP.

FIGURE 5-32 A small office building conversion at the edge of downtown Denver included the replacement of a portion of the site's parking with modular block porous pavement underlain by an 18-inch layer of crushed rock. Rainfall on the porous pavement and roof runoff for most storm events are contained in the reservoir created by the crushed rock. The pavement infiltrates runoff from most storm events for one-third of the impervious area on the half-acre site.

to as much as 95 percent or greater (van Seters et al., 2006; Kwiatkowski et al., 2007). Box 5-7 describes the success of a recent retrofitting of asphalt with pervious pavement at Villanova University.

The strengths of subsurface runoff-volume-reduction SCMs are similar to those of their vegetated counterparts. Additional attributes include their ability to be installed under parking areas and to manage larger volumes of rainfall. These SCMs typically have few problems with safety or vector-borne diseases because of their subsurface location and storage capacity, and they can be very aesthetically pleasing. The potential of permeable pavement could be particularly far-reaching if one considers the amount of impervious surface in urban areas that is comprised of roads, driveways, and parking lots.

The weaknesses of these SCMs are also similar to those of vegetated systems, including their dependence on native soil infiltration and the need to understand groundwater levels and karst geology. Simply estimating the soil hydraulic conductivity can have an error rate of an order of magnitude. Specifically for subsurface systems that use geotextiles (not permeable pavement), there is a danger of TSS being compressed against the bottom of the geotextile, preventing infiltration. There are no freeze–thaw cycles or vegetated processes that can reopen pathways, so the control of TSS is even more critical to their life span. In most cases (permeable pavement is an exception), pretreatment is required, except for the cleanest of sources (like a slate roof). Typically, manufactured devices, sediment forebays, or grass strips are part of the design of subsurface SCMs to capture the larger sediment particles.

The maintenance of subsurface runoff-volume-reduction SCMs is relatively simple but critical. If inspection wells are installed, a visit after a rainstorm will check that the volume is captured, and later that it has infiltrated. Porous surfaces should undergo periodic vacuum street sweeping when a sediment source is present. Pretreatment devices require sediment removal. The difficulty with this class of SCMs is that, if a toxic spill occurs or maintenance is not proactive, there are no easy corrective measures other than replacement.

Low-Impact Development. LID refers primarily to the use of small, engineered, on-site stormwater practices to treat the quality and quantity of runoff at its source. It is discussed here because the SCMs that are thought of as LID—particularly vegetated swales, green roofs, permeable pavement, and rain gardens—are all runoff-volume-reduction SCMs. They are designed to capture the first portion of a rainfall event and to treat the runoff from a few hundred square meters of impervious cover.

As discussed earlier, several studies have measured the runoff volume reduction of individual LID practices. Fewer studies are available on whether multiple LID practices, when used together, have a cumulative benefit at the neighborhood or catchment scale. Four monitoring studies have clearly documented a major reduction in runoff from developments that employ LID and Better Site Design (see Box 5-8) compared to those that do not. In addition, six studies have documented the runoff reduction benefits of LID at the catchment or watershed scale using a modeling approach (Alexander and Heaney, 2002; Stephens et al., 2002; Holman-Dodds et al., 2003; Coombes, 2004; Hardy et al., 2004; Huber et al., 2006).

BOX 5-7 Evaluation Through Monitoring: Villanova Pervious Concrete SCM

Villanova University's Stormwater Research and Demonstration Park is home to a pervious

concrete infiltration site (Figure 5-33). The site, formerly a standard asphalt paved area, is located between two dormitories. The area was reconstructed in the summer of 2002 and outfitted with three infiltration beds overlain with pervious concrete. Usage of the site consists primarily of pedestrian traffic with some light automobile traffic. The pervious concrete site is designed to infiltrate small-volume storms (1 to 2 inches). Roof top runoff is directly piped to the rock bed under the concrete. For these smaller events, there is essentially no runoff from the site.

Figure 5-33 Villanova University pervious concrete retrofit site. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

The pervious concrete is outlined with decorative pavers that divide the pervious concrete into three separate sections as seen in Figure 5-33. Underneath these three sections are individual storage beds. Since the site lies on a significant slope it was necessary to create earthen dams that isolate each storage area. At the top of each dam there is an overflow pipe which connects the storage area with the next one downstream. The final storage bed has an overflow that connects to the existing storm sewer. The beds are approximately 4 feet deep and are filled with stone, producing about 40 percent void space within the beds. A geotextile pervious liner was laid down to separate the storage beds from the undisturbed soil below (Figure 5-34). The primary idea was to avoid any upward migration of the in-situ soil, which could possibly reduce the capacity of the beds over time.

FIGURE 5-34 Infiltration bed under construction. Pervious concrete has functionality and workability similar to that of regular concrete. However, the pervious concrete mix lacks the sand and other fine particles found in regular concrete. This creates a significant amount of void space which allows water to flow relatively unobstructed through the concrete. This site was the first attempt at creating a pervious concrete SCM in the area, and there were construction and material problems. Since that time the industry has matured, and a second site on campus constructed in 2007 has not had any significant difficulties. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

continues next page

Note the runoff from impervious concrete spilling over to the pervious concrete

Continuous monitoring of the site over a number of years has considerably increased our understanding of infiltration. Similar to the bioinfiltration site (Box 5-6), the infiltration rate of permeable concrete does vary as a function of temperature (Braga et al., 2007; Emerson and Traver, 2008), and the SCM volume reduction is impressive. As shown in Figure 5-35, over 95 percent of the yearly rainfall was infiltrated with minimal overflow. Besides hydrologic plots, water quality plots also show the benefits of permeable concrete (Kwiatkowski et al., 2007). Because over 95 percent of the runoff is infiltrated, well over 95 percent of the pollutant mass is also removed. Figure 5-36 shows the level of copper extracted from lysimeters buried under the rock bed and surrounding grass. The plot is arranged in quartiles, with readings in milligrams per liter. Lysimeter samples from under the surrounding grass and one foot and four feet under the infiltration bed all report almost no copper, compared to samples taken from the port in the rock bed and from the gutters draining the roof tops.

continues next page

FIGURE 5-35 Rainfall and corresponding outflow from the weir of the SCM. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

FIGURE 5-36 Copper measured at various locations. The three quartiles correspond to the 25th, 50th, and 75th percentile value of all data collected. A21 is a lysimeter location under the surrounding grass, while B11 and B13 refer to locations that are one foot and four feet under the infiltration bed, respectively. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

BOX 5-8 Jordan Cove—An LID Watershed Project

LID refers to the use of a system of small, on-site SCMs to counteract increases in flow and pollution following development and to control smaller runoff events. Although some studies are available that measure the runoff volume reduction of individual LID practices, fewer studies are available on whether multiple LID practices, when used together, have a cumulative benefit at the neighborhood or catchment scale. Of those listed in Table 5-6, Jordan Cove is the most extensively studied, as it was monitored for ten years as part of a paired watershed study that included a site with no SCMs and a site with traditional (detention) SCMs. The watersheds were monitored during calibration, construction, and post-construction periods. The project consisted of 12 lots, and the SCMs used were bioretention, porous pavements, no-mow areas, and education for the homeowners (Figure 5-37).

TABLE 5-6 Review of Recent LID Monitoring Research on a Catchment Scale

Location	Practices	Runoff Reduction
Jordan Cove, USA	Permeable pavers, bioretention, grass swales,	84%
Dietz and Clausen (2008)	education	
Somerset Heights, USA	Grass swale, bioretention, and rooftop	45%
Cheng et al. (2005)	disconnection	
Figtree Place, Australia	Rain tanks, infiltration trenches, swales	100%
Coombes et al. (2000)		

FIGURE 5-37 Jordan Cove LID subdivision. Permission pending

continues next page

BOX 5-8 Continued

Figure 5-38 (right panel) displays the hydrograph from a post-construction storm comparing the LID, traditional, and control watersheds. Note that the traditional watershed shows the delay and peak reduction from the detention basins, while the LID watershed has almost no runoff. The LID watershed was found to reduce runoff volume by 74 percent by increasing infiltration over preconstruction levels.

FIGURE 5-38. Significant changes in runoff volume (m³/week), runoff depth (cm/week) and peak discharge (m³/sec/week) after construction was completed (left panel). Hydrograph of all three subdivisions in the project, showing the larger volume and rate of runoff from the traditional and control subdivisions, as compared to the LID (right panel). Permission pending.

Comparisons of nutrient and metal concentrations and total export in the surface water shows the value of the LID approach as well as the significance of the reduction in runoff volume. Figure 5-39 shows the changes in pollutant concentration and mass export before and after construction for the traditional and LID subdivisions. Note that concentrations of TSS and nutrients are increased in the LID subdivision (left-hand panel); this is because swales and natural systems are used in place of piping as a "green" drainage system and because only larger storms leave the site. The right-hand panel shows how the large reduction in runoff achieved through infiltration can dramatically reduce the net export of pollutants from the LID watershed.

FIGURE 5-39 Significant changes in pollutant concentration, after construction was completed (left). Units are mg/L for NO₃-N, NH₃-N, TKN, TP, and BOD, and μ g/L for Cu, Pb, and Zn. Significant changes in mass export (kg/ha/year) after construction was completed (right). Permission pending

SOURCE: Clausen (2007).

Peak Flow Reduction and Runoff Treatment

After efforts are made to prevent the generation of pollutants and to reduce the volume of runoff that reaches stormwater systems, stormwater management focuses on the reduction of peak flows and associated treatment of polluted runoff. The main class of SCMs used to accomplish this is extended detention basins, versions of which have dominated stormwater management for decades. These include a wide variety of ponds and wetlands, including wet ponds (also known as retention basins), dry extended detention ponds (as known as detention basins), and constructed wetlands. By holding a volume of stormwater runoff for an extended period of time, extended detention SCMs can achieve both water quality improvement and reduced peak flows. Generally the goal is to hold the flows for 24 hours at a minimum to maximize the opportunity of settling, adsorption, and transformation of pollutants (based on past pollutant removal studies) (Rea and Traver, 2005). For smaller storm events (one- to two-year storms), this added holding time also greatly reduces the outflows from the SCM to a level that the stream channel can handle. Most wet ponds and stormwater wetlands can hold a "water quality" volume, such that the flows leaving in smaller storms have been held and "treated" for multiple days. Extended detention dry ponds greatly reduce the outflow peaks to achieve the required residence times.

Usually extended detention devices are lower in the treatment train of SCMs, if not at the end. This is both due to their function (they are designed for larger events) and because the required water sources and less permeable soils needed for these SCMs are more likely to be found at the lower areas of the site. Some opportunities exist to naturalize dry ponds or to retrofit wet ponds into stormwater wetlands but it depends on their site configuration and hydrology. Stormwater wetlands are shown in Figures 5-40 and 5-41. A wet pond and a dry extended detention basin are shown in Figures 5-42 and 5-43.

Simple ponds are little more than a hole in the ground, in which stormwater is piped in and out. Dry ponds are meant to be dry between storms, whereas wet ponds have a permanent pool throughout the year. Detention basins reduce peak flows by restricting the outflows and creating a storage area. Depending on the detention time, outflows can be reduced to levels that do not accelerate erosion, that protect the stream channel, and that reduce flooding.

FIGURE 5-40 Constructed wetland at SOURCE: PaDEP (2006). SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP.

The flow normally enters the structure through a sediment forebay (Figure 5-44), which is included to capture incoming sediment, remove the larger particles through settling, and allow for easier maintenance. Then a meandering path or cell structure is built to "extend" and slow down the flows. The main basin is a large storage area (sometimes over the meandering flow paths). Finally, the runoff exits through an outflow control structure built to retard flow.

Wet ponds, stormwater wetlands, and (to a lesser extent) dry extended detention ponds provide treatment. The first step in treatment is the settling of larger particles in the sediment forebay. Next, for wet ponds a permanent pool of water is maintained so that, for smaller storms, the new flows push out a volume that has had a chance to interact with vegetation and be "treated." This volume is equivalent to an inch of rain over the impervious surfaces in the drainage area. Thus, what exits the SCM during smaller storm events is baseflow contributions and runoff that entered during previous events. For dry extended detention ponds, there is no permanent pool and the outlet is instead greatly restricted. For all of these devices, vegetation is considered crucial to pollutant removal. Indeed, wet ponds are designed with an aquatic bench around the edges to promote contact with plants. The vegetation aids in reduction of flow velocities, provides growth surfaces for microbes, takes up pollutants, and provides filtering (Braskerud, 2001).

FIGURE 5-42 Wet pond. SOURCE: PaDEP (2006).

FIGURE 5-43 Dry extended detention pond. SOURCE: PaDEP (2006).

FIGURE 5-44 Villanova University sediment forebay. SOURCE: Reprinted, with permission, from VUSP. Copyright by VUSP002E

The ability of detention structures to achieve a certain level of control is size related that is, the more peak flow reduction or pollutant removal required, the more volume and surface area are needed in the basin. Because it is not simply the peak flows that are important, but also the duration of the flows that cause damage to the stream channels (McCuen, 1979; Loucks et al., 2005), some detention basins are currently sized and installed in series with runoff-volumereduction SCMs.

The strength of extended detention devices is the opportunity to create habitats or picturesque settings during stormwater management. The weaknesses of these measures include large land requirements, chloride buildup, possible temperature effects, and the creation of habitat for undesirable species in urban areas. There is a perception that these devices promote mosquitoes, but that has not been found to be a problem when a healthy biological habitat is created (Greenway et al., 2003). Another drawback of this class of SCMs is that they often have limited treatment capacity, in that they can reduce pollutants in stormwater only to a certain level. These so-called irreducible effluent concentrations have been documented mainly for ponds and stormwater wetlands, as well as sand filters and grass channels (Schueler, 1998). Finally, it should be noted that either a larger watershed (10–25 acres; CWP, 2004) or a continuous water source is needed to sustain wet ponds and stormwater wetlands.

Maintenance requirements for extended detention basins and wetlands include the removal of built-up sediment from the sediment forebay, harvesting of grasses to remove accumulated nutrients, and repair of berms and structures after storm events. Inspection items relate to the maintenance of the berm and sediment forebay.

While the basic hydrologic function of extended detention devices is well known, their performance on a watershed basis is not. Because they do not significantly reduce runoff volume and are designed on a site-by-site basis using synthetic storm patterns, their exclusive use as a flood reduction strategy at the watershed scale is uncertain (McCuen, 1979; Traver and Chadderton, 1992). Much of this variability is reduced when they are coupled with volume reduction SCMs at the watershed level. Pollutant removal is effected by climate, short-circuiting, and by the schedule of sediment removal and plant harvesting. Extreme events can resuspend captured sediments, thus reintroducing them into the environment. Although there is debate, it seems likely that plants will need to be harvested to accomplish nutrient removal (Reed et al., 1998).

Runoff Treatment

As mentioned above, many SCMs associated with runoff volume reduction and extended detention provide a water quality benefit. There are also some SCMs that focus primarily on water quality with little peak flow or volume effect. Designed for smaller storms, these are usually based on filtration, hydrodynamic separation, or small-scale bioretention systems that drain to a subsequent receiving water or other device. Thus, often these SCMs are used in conjunction with other devices in a treatment train or as retrofits under parking lots. They can be very effective as pretreatment devices when used "higher up" in the watershed than infiltration structures. Finally, in some cases these SCMs are specifically designed to reduce peak flows in addition to providing water quality benefits by introducing elements that make them similar to detention basins; this is particularly the case for sand filters.

The sand filter is relied on as a treatment technology in many regions, particular those where stream geomorphology is less of a concern and thus peak flow control and runoff volume reduction are not the primary goals. These devices can be effective at removing suspended sediments and can extend the longevity and performance of runoff-volume-reduction SCMs. They are also one of the few urban retrofits available, due to the ability to implement them within traditional culvert systems. Figures 5-45 and 5-46 show designs for the Austin sand filter and the Delaware sand filter.

Filters use sand, peat, or compost to remove particulates, similar to the processes used in drinking water plants. Sand filters primarily remove suspended solids and ammonia nitrogen. Biological material such as peat or compost provides adsorption of contaminants such as dissolved metals, hydrocarbons, and other organic chemicals. Hydrodynamic devices use rotational forces to separate the solids from the flow, allowing the solids to settle out of the flow stream. There is a recent class of bioretention-like manufactured devices that combine inlets with planters. In these systems, small volumes are directed to a soil planter area, with larger flows bypassing and continuing down the storm sewer system. In any event, for manufactured items the user needs to look to the manufacturer's published and reviewed data to understand how the device should be applied.

The level of control that can be achieved with these SCMs depends entirely on sizing of the device based on the incoming flow and pollutant loads. Each unit has a certified removal rate depending on inflow to the SCM. Also all units have a maximum volume or rate of flow they can treat, such that higher flows are bypassed with no treatment. Thus, the user has to determine what size unit is needed and the number to use based on the area's hydrologic cycle and what criteria are to be met.

With the exception of some types of sand filters, the strengths of water quality SCMs are that they can be placed within existing infrastructure or under parking lots, and thus do not take up land that may be used for other purposes. They make excellent choices for retrofit situations. For filters, there is a wealth of experience from the water treatment community on their operations. For all manufactured devices there are several testing protocols that have been set up to validate the performance of the manufactured devices (the sufficiency of which is discussed in Box 5-9). Weaknesses of these devices include their cost and maintenance requirements.

FIGURE 5-45 Austin sand filter. SOURCE: Robert Traver.

FIGURE 5-46 Delaware sand filter. SOURCE: Tom Schueler.
BOX 5-9 Insufficient Testing of Proprietary Stormwater Control Measures

Manufacturers of proprietary SCMs offer a service that can save municipalities time and money. Time is saved by the ability of the manufactures to quickly select a model matching the needs of the site. A city can minimize the cost of buying the product by requiring the different manufacturers to submit bids for the site. All the benefits of the service will have no meaning, however, if the cities cannot trust the performance claims of the different products. Because the United States does not have, at this time, a national program to verify the performance of proprietary SCMs, interested municipalities face a high amount of uncertainty when they select a product. Money could be wasted on products that might have the lowest bid, but do not achieve the water quality goals of the city or state.

The EPA's Environmental Technology Verification (ETV) program was created to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Wet Weather Flow Technologies Pilot was established as part of the ETV program to verify commercially available technologies used in the abatement and control of urban stormwater runoff, combined sewer overflows, and sanitary sewer overflows. Ten proprietary SCMs were tested under the ETV program (see Figure 5-47), and the results of the monitoring are available on the National Sanitation Foundation International website. Unfortunately, the funding for the ETV program was discontinued before all the stormwater products could be tested. Without a national testing program some states have taken a more regional approach to verifying the performance of proprietary practices, while most states do not have any type of verification or approval program.

The Washington Department of Ecology has supported a testing protocol called Technology Assessment Protocol–Ecology that describes a process for evaluating and reporting on the performance and appropriate uses of emerging SCMs. California, Massachusetts, Maryland, New Jersey, Pennsylvania, and Virginia have sponsored a testing program called Technology Acceptance and Reciprocity Partnership (TARP), and a number of products are being tested in the field. The State of Wisconsin has prepared a draft technical standard (1006) describing methods for predicting the sitespecific reduction efficiency of proprietary sedimentation devices. To meet the criteria in the standard the manufacturers can either use a model to predict the performance of the practice or complete a laboratory protocol designed to develop efficiency curves for each product. Although none of these state or federal verification efforts have produced enough information to sufficiently reduce the uncertainty in selection and sizing of proprietary SCMs, many proprietary practices are being installed around the country, because of the perceived advantage of the service being provided by the manufacturers and the sometimes overly optimistic performance claims.

All those involved in stormwater management, including the manufacturers, will have a much better chance of implementing a cost-effective stormwater program in their cities if the barriers to a national testing program for proprietary SCMs are eliminated. Two of the barriers to the ETV program were high cost and the transferability of the results. Also, the ETV testing did not produce results that could be used in developing efficiency curves for the product. A new national testing program could reduce the cost by using laboratory testing instead of field testing. Each manufacturer would only have to do one series of tests in the lab and the results would be applicable to the entire country. The laboratory protocol in the Wisconsin Technical Standard 1006 provides a good example of what should be included to evaluate each practice over a range of particle sizes and flows. These types of laboratory data could also be used to produce efficiency curves for each practice. It would be relatively easy for state and local agencies to review the benefits of each installation if the efficiency curves were incorporated into urban runoff models, such as WinSLAMM or P8.

continues next page

Regular maintenance and inspection at a high level are required to remove captured pollutants, to replace mulch, or to rake and remove the surface layer to prevent clogging. In some cases specialized equipment (vacuum trucks) is required to remove built-up sediment. Although the underground placement of these devices has many benefits, it makes it easy to neglect their maintenance because there are no signs of reduced performance on the surface. Because these devices are manufactured, the unit construction cost is usually higher than for other SCMs. Finally, the numerous testing protocols are confusing and prevent more widespread applications.

The chief uncertainty with these SCMs is due to the lack of certification of some manufactured devices. There is also concern about which pollutants are removed by which class

of device. For example, hydrodynamic devices and sand filters do not address dissolved nutrients, and in some cases convert suspended pollutants to their dissolved form. Both issues are related to the false perception that a single SCM must be found that will comprehensively treat stormwater. Such pressures often put vendors in a position of trying to certify that their devices can remove all pollutants. Most often, these devices can serve effectively as part of a treatment train, and should be valued for their incremental contributions to water quality treatment. For example, a filter that removes sediment upstream of a bioinfiltration SCM can greatly prolong the life of the infiltration device.

Aquatic Buffers and Managed Floodplains

Aquatic buffers, sometimes also known as stream buffers or riparian buffers, involve reserving a vegetated zone adjacent to streams, shorelines, or wetlands as part of development regulations or as an ordinance. In most regions of the country, the buffer is managed as forest, although in arid or semi-arid regions it may be managed as prairie, chapparal, or other cover. When properly designed, buffers can both reduce runoff volumes and provide water quality treatment to stormwater.

The performance of urban stream buffers cannot be predicted from studies of buffers installed to remove sediment and nutrients from agricultural areas (Lowrance and Sheridan, 2005). Agricultural buffers have been reported to have high sediment and nutrient removal because they intercept sheet flow or shallow groundwater flow in the riparian zone. By contrast, urban stream buffers often receive concentrated surface runoff or may even have a storm-drain pipe that short-circuits the buffer and directly discharges into the stream. Consequently, the pollutant removal capability of urban stream buffers is limited, unless they are specifically designed to distribute and treat stormwater runoff (NRC, 2000). This involves the use of level spreaders, grass filters, and berms to transform concentrated flows into sheet flow (Hathaway and Hunt, 2006). Such designed urban stream buffers have been applied widely in the Neuse River basin to reduce urban stormwater nutrient inputs to this nitrogen-sensitive waterbody.

The primary benefit of buffers is to help maintain aquatic biodiversity within the stream. Numerous researchers have evaluated the relative impact of riparian forest cover and impervious cover on stream geomorphology, aquatic insects, fish assemblages, and various indexes of biotic integrity. As a group, the studies suggest that indicator values for urban stream health increase when riparian forest cover is retained over at least 50 to 75 percent of the length of the upstream network (Goetz et al., 2003; Wang et al., 2003b; McBride and Booth, 2005; Moore and Palmer, 2005). The width of the buffer is also important for enhancing its stream protection benefits, and it ranges from 25 to 200 feet depending on stream order, protection objectives, and community ordinances. At the present time, there are no data to support an optimum width for water quality purposes. The beneficial impact of riparian forest cover is less detectable when watershed impervious cover exceeds 15 percent, at which point degradation by stormwater runoff overwhelms the benefits of the riparian forest (Roy et al., 2005, 2006; Walsh et al., 2007).

Maintenance, inspection, and compliance for buffers can be a problem. In most communities, urban stream buffers are simply a line on a map and are not managed in any significant way after construction is over. As such, urban stream buffers are prone to residential encroachment and clearing, and to colonization by invasive plants. Another important practice is to protect, preserve, or otherwise manage the ultimate 100-year floodplain so that vulnerable property and infrastructure are not damaged during extreme floods. Federal Emergency

Management Agency (FEMA), state, and local requirements often restrict or control development on land within the floodway or floodplain. In larger streams, the floodway and aquatic buffer can be integrated together to achieve multiple social objectives.

Stream Rehabilitation

While not traditionally considered an SCM, certain stream rehabilitation practices or approaches can be effective at recreating stream physical habitat and ecosystem function lost during urbanization. When combined with effective SCMs in upland areas, stream rehabilitation practices can be an important component of a larger strategy to address stormwater. From the standpoint of mitigating stormwater impacts, four types of urban stream rehabilitation are common:

- Practices that stabilize streambanks and/or prevent channel incision/enlargement can reduce downstream delivery of sediments and attached nutrients (see Figure 5-48). Although the magnitude of sediment delivery from urban-induced stream-channel enlargement is well documented, there are very few published data to quantify the potential reduction in sediment or nutrients from subsequent channel stabilization.
- Streams can be hydrologically reconnected to their floodplains by building up the profile of incised urban streams using grade controls so that the channel and floodplain interact to a greater degree. Urban stream reaches that have been so rehabilitated have increased nutrient uptake and processing rates, and in particular increased denitrification rates, compared to degraded urban streams prior to treatment (Bukavecas, 2007; Kaushal et al., 2008). This suggests that urban stream rehabilitation may be one of many elements that can be considered to help decrease loads in nutrient-sensitive watersheds.
- Practices that enhance in-stream habitat for aquatic life can improve the expected level of stream biodiversity. However, Konrad (2003) notes that improvement of biological diversity of urban streams should still be considered an experiment, since it is not always clear what hydrologic, water quality, or habitat stressors are limiting. Larson et al. (2001) found that physical habitat improvements can result in no biological improvement at all. In addition, many of the biological processes in urban stream ecosystems remain poorly understood, such as carbon processing and nutrient uptake.
- Some stream rehabilitation practices can indirectly increase stream biodiversity (such as riparian reforestation, which could reduce stream temperatures, and the removal of barriers to fish migration).

FIGURE 5-48 Three photographs illustrate stream rehabilitation in Denver. The top left picture is a creek that has eroded in its bed due to urbanization. The top right picture shows a portion of the stabilized creek immediately after construction. Check structures, which keep the creek from cutting its bed, are visible in the middle distance. The bottom image shows the creek just upstream of one of the check structures two years after stabilization. The thickets of willows established themselves naturally. The only revegetation performed was to seed the area for erosion control.

It should be noted that the majority of urban stream rehabilitation projects undertaken in the United States are designed for purposes other than mitigating the impacts of stormwater or enhancing stream biodiversity or ecosystem function (Bernhardt et al., 2005). Most stream rehabilitation projects have a much narrower design focus, and are intended to protect threatened infrastructure, naturalize the stream corridor, achieve a stable channel, or maintain local bank stability (Schueler and Brown, 2004). Improvements in either biological health or the quality of stormwater runoff have rarely been documented.

Unique design models and methods are required for urban streams, compared to their natural or rural counterparts, given the profound changes in hydrologic and sediment regime and stream–floodplain interaction that they experience (Konrad, 2003). While a great deal of design guidance on urban stream rehabilitation has been released in recent years (FISRWG, 2000; Doll and Jennings, 2003; Schueler and Brown, 2004), most of the available guidance has not yet been tailored to produce specific outcomes for stormwater mitigation, such as reduced sediment delivery, increased nutrient processing, or enhanced stream biodiversity. Indeed, several researchers have noted that many urban stream rehabilitation projects fail to achieve even their narrow design objectives, for a wide range of reasons (Bernhardt and Palmer, 2007; Sudduth et al., 2007). This is not surprising given that urban stream rehabilitation is relatively new and rarely addresses the full range of in-stream alteration generated by watershed-scale changes.

This shortfall suggests that much more research and testing are needed to ensure urban stream habilitation can meet its promise as an emerging SCM.

Municipal Housekeeping (Street Sweeping and Storm-Drain Cleanouts)

Phase II NPDES stormwater permits specifically require municipal good housekeeping as one of the six minimum management measures for MS4s. Although EPA has not presented definitive guidance on what constitutes "good housekeeping", CWP (2008) outlines ten municipal operations where housekeeping actions can improve the quality of stormwater, including the following:

- municipal hotspot facility management,
- municipal construction project management,
- road maintenance,
- street sweeping,
- storm-drain maintenance,
- stormwater hotline response,
- landscape and park maintenance,
- SCM maintenance, and
- employee training.

The overarching theme is that good housekeeping practices at municipal operations provide source treatment of pollutants before they enter the storm-drain system. The most frequently applied practices are street sweeping (Figure 5-49) and sediment cleanouts of sumps and storm-drain inlets. Most communities conduct both operations at some frequency for safety and aesthetic reasons, although not specifically for the sake of improving stormwater quality (Law et al., 2008).

Numerous performance monitoring studies have been conducted to evaluate the effect of street sweeping on the concentration of stormwater pollutants in downstream storm-drain pipes (see Pitt, 1979; Bender and Terstriep, 1994; Brinkman and Tobin, 2001; Zarrielo et al., 2002; Chang et al., 2005; USGS, 2005; Law et al., 2008). The basic finding is that regular street sweeping has a low or limited impact on stormwater quality, depending on street conditions, sweeping frequency, sweeper technology, operator training, and on-street parking. Sweeping will always have a limited removal capability because rainfall events frequently wash off pollutants before the sweeper passes through, and only some surfaces are accessible to the sweeper, thus excluding sidewalk, driveways, and landscaped areas. Frequent sweeping (i.e., weekly or monthly) has a moderate capability to remove sediment, trash and debris, coarse solids, and organic matter.

Fewer studies have been conducted on the pollutant removal capability of frequent sediment cleanout of storm-drain inlets, most in regions with arid climates (Lager et al., 1977; Mineart and Singh, 1994; Morgan et al., 2005). These studies have shown some moderate pollutant removal if cleanouts are done on a monthly or quarterly basis. Most communities, however, report that they clean out storm drains on an annual basis or in response to problems or drainage complaints (Law, 2006).

FIGURE 5-49 Vacuum street sweeper at Villanova University. SOURCE: Robert Traver.

Frequent sweeping and cleanouts conducted on the dirtiest streets and storm drains appear to be the most effective way to include these operations in the stormwater treatment train. However, given the uncertainty associated with the expected pollutant removal for these practices, street sweeping and storm-drain cleanout cannot be relied on as the sole SCMs for an urban area.

Illicit Discharge Detection and Elimination

MS4 communities must develop a program to detect and eliminate illicit discharges to their storm-drain system as a stormwater NPDES permit condition. Illicit discharges can involve illegal cross-connections of sewage or washwater into the storm-drain system or various intermittent or transitory discharges due to spills, leaks, dumping, or other activities that introduce pollutants into the storm-drain system during dry weather. National guidance on the methods to find and fix illicit discharges was developed by Brown et al. (2004). Local illicit discharge detection and elimination (IDDE) programs represent an ongoing and perpetual effort to monitor the network of pipes and ditches to prevent pollution discharges.

The water quality significance of illicit discharges has been difficult to define since they occur episodically in different parts of a municipal storm drain system. Field experience in conducting outfall surveys does indicate that illicit discharges may be present at 2 to 5 percent of all outfalls at any given time. Given that pollutants are being introduced into the receiving water during dry weather, illicit discharges may have an amplified effect on water quality and biological diversity.

Many communities indicate that they employ a citizen hotline to report illicit discharges and other water quality problems (Brown et al., 2004), which sharply increases the number of illicit discharge problems observed.

Stormwater Education

Like IDDE, stormwater education is one of the six minimum management measures that MS4 communities must address in their stormwater NPDES permits. Stormwater education involves municipal efforts to make sure individuals understand how their daily actions can positively or negatively influence water quality and work to change specific behaviors linked to specific pollutants of concern (Schueler, 2001c). Targeted behaviors include lawn fertilization, littering, car fluid recycling, car washing, pesticide use, septic system maintenance, and pet waste pickup. Communities may utilize a wide variety of messages to make the public aware of the behavior and more desirable alternatives through radio, television, newspaper ads, flyers, workshops, or door-to-door outreach. Several communities have performed before-and-after surveys to assess both the penetration rate for these campaigns and their ability to induce changes in actual behaviors. Significant changes in behaviors have been recorded (see Schueler, 2002), although few studies are available to link specific stormwater quality improvements to the educational campaigns (but see Turner, 2005; CASQA, 2007).

Residential Stewardship

This SCM involves municipal programs to enhance residential stewardship to improve stormwater quality. Residents can undertake a wide range of activities and practices that can reduce the volume or quality of runoff produced on their property or in their neighborhood as a whole. This may include installing rain barrels or rain gardens, planting trees, xeriscaping, downspout disconnection, storm-drain marking, household hazardous waste pickups, and yard waste composting (CWP, 2005). This expands on stormwater education in that a municipality provides a convenient delivery service to enable residents to engage in positive watershed behavior. The effectiveness of residential stewardship is enhanced when carrots are provided to encourage the desired behavior, such as subsidies, recognition, discounts, and technical assistance (CWP, 2005). Consequently, communities need to develop a targeted program to educate residents and help them engage in the desired behavior.

SCM Performance Monitoring and Modeling

Stormwater is characterized by widely fluctuating flows. In addition, inflow pollutant concentrations vary over the course of a storm and can be a function of time since the last storm, watershed, size and intensity of rainfall, season, amount of imperviousness, pollutant of interest, and so forth. This variability of the inflow to SCMs along with the very nature of SCMs makes performance monitoring a complex task. Most SCMs are built to manage stormwater, not to enable flow and water quality monitoring. Furthermore, they are incorporated into the collection system and spread throughout developments. Measurement of multiple inflows, outflows, evapotranspiration, and infiltration are simply not feasible for most sites. Many factors, such as temperature and climate, play a role in how well SCMs function. Infiltration rates can vary by an order of magnitude as a function of temperature (Braga et al., 2007; Emerson and Traver, 2008), such that a reading in late summer might be twice that of a winter reading. Determining performance can be further complicated because, e.g., at the start of a storm a detention basin

could still be partially full from a previous storm, and removal rates for wetlands are a function of the growing season, not to mention snowmelt events.

Monitoring of SCMs is usually performed for one of two purposes: functionality or more intensive performance monitoring. Monitoring of functionality is primarily to establish that the SCM is functioning as designed. Performance monitoring is focused on determining what level of performance is achieved by the SCM.

Functionality Monitoring

Functionality monitoring, in a broad sense, involves checking to see whether the SCM is functioning and screening it for potential problems. Both the federal and several state industrial and construction stormwater general permits have standard requirements for visual inspections following a major storm event. Visual observations of an SCM by themselves do not provide information on runoff reduction or pollutant removal, but rather only that the device is functioning as designed. Adding some grab samples for laboratory analysis can act as a screening tool to determine if a more complex analysis is required.

The first step of functionality monitoring for any SCM is to examine the physical condition of the device (piping, pervious surfaces, outlet structure, etc.). Visual inspection of sediments, eroded berms, clogged outlets, and other problems are good indications of the SCM's functionality (see Figure 5-50). For infiltration devices, visiting after a storm event will show whether or not the device is functioning. A simple staff gauge (Figure 5-51) or a stilling well in pervious pavement can be used to measure the amount of water-level change over several days to estimate infiltration rates. Minnesota suggests the use of fire equipment or hydrants to fill infiltration sites with a set volume of water to measure the rate of infiltration. For sites that are designed to capture a set volume, for example a green roof, a visit could be coordinated with a rainfall event of the appropriate size to determine whether there is overflow during the event. If so, then clearly further investigation is required.

FIGURE 5-50 Rusted outlet structure. SOURCE: Reprinted, with permission, from Emerson. Copyright by Clay Emerson.

FIGURE 5-51 Staff gauge attached to ultrasonic sensor after a storm. SOURCE: VUSP.

For extended detention and stormwater wetlands, the depth of water during an event is an indicator of how well the SCM is functioning. Usually high-water marks are easy to determine due to debris or mud marks on the banks or the structures. If the size of the storm event is known, the depths can be compared to what was expected for the structure. Other indicators of problems would include erosion downstream of the SCM, algal blooms, invasive species, poor water clarity, and odor.

For water quality and manufactured devices, visual inspections after a storm event can determine whether the SCM is functioning properly. Standing water over a sand or other media filter 48 hours after a storm is a sign of problems. Odor and lack of flow clarity could be a sign of filter breakthrough or other problems. For manufactured devices, literature about the device should specify inspection and maintenance procedures.

Monitoring of nonstructural SCMs is almost exclusively limited to visual observation due to the difficulty in applying numerical value to their benefits. Visual inspection can identify eroded stream buffers, additional paved areas, or denuded conservation areas (see Figure 5-52).

Performance Monitoring

Performance monitoring is an extremely intensive effort to determine the performance of an SCM over either an individual storm event or over a series of storms. It requires integration of flow and water quality data creating both a hydrograph and a polutograph for a storm event as shown in Figure 5-53. The creation of these graphs requires continuous monitoring of the hydrology of the site and multiple water quality samples of the SCM inflow and outflow, the vadose zone, and groundwater. Event mean concentrations can then be determined from these data. There should be clear criteria for the number and type of storms to be sampled and for the conditions preceding a storm. For example, for most SCMs it would be improper to sample a second storm event in series, as the inflow may be free of pollutants and the soil moisture filled, resulting in a poor or negative performance. (Extended detention basins are an exception because the outflow during a storm event may include inflows from previous events.) The size of the sampled storm is also important. If the water quality goal is focused on smaller events, the 100-year storm would not give a proper picture of the performance because the occurrence is so rare that it is not a water quality priority.

FIGURE 5-52 Wooded conservation area stripped of trees. Note pile of sawdust. SOURCE: Robert Traver.

9/18-9/19/2003 Suspended Solids Pollutograph

FIGURE 5-53 Example polutograph that displays inflow and outflow TSS during a storm event from the Villanova wetland stormwater SCM. SOURCE: Reprinted, with permission, Rea and Traver (2005). Copyright 2005 by the American Society of Civil Engineers.

For runoff-volume-reduction SCMs, performance monitoring can be extremely difficult because these systems are spread over the project site. The monitoring program must consider multiple-size storms because these SCMs are designed to remove perhaps the first inch of runoff. Therefore, for storms of less than an inch, there is no surface water release, so the treatment is 100 percent effective for surface discharges. During larger events, a bioretention SCM or green roof may export pollutants. When viewed over the entire spectrum of storms, these devices are an outstanding success; however, this may not be evident during a hurricane.

Through the use of manufactured weirs (Figure 5-54), it is possible to develop flow-depth criteria based on hydraulic principles for surface flows entering or leaving the SCM. Where this is not practical, various manufacturers have Doppler velocity sensors that, combined with geometry and depth, provide a reasonable continuous record of flow. Measurement of depth within a device can be accomplished through use of pressure transducers, bubblers, float gauges, and ultrasonic sensors. Other common measures would include rainfall and temperature. One advantage of these data recording systems is that they can be connected to water quality probes and automated samplers to provide a flow-weighted sample of the event for subsequent laboratory analysis. Field calibration and monitoring of these systems is required.

FIGURE 5-54 Weir flow used to measure flow rate. Courtesy of Robert Traver.

Groundwater sampling for infiltration SCMs is a challenge. Although the rate of change in water depth can indicate volume moving into the soil mantle, it is difficult to establish whether this flow is evapotranspirated or ends up as baseflow or deep groundwater input. Sampling in the vadose zone can be established through the use of lysimeters that, through a vacuum, draw out water from the soil matrix. Soil moisture probes can give a rough estimation of the soil moisture content, and weighing lysimeters can establish evapotranspiration rates. Finally groundwater wells can be used to establish the effect of the SCM on the groundwater depth and quality during and after storm events.

Performance monitoring of extended detention SCMs is difficult because the inflows and outflows are variable and may extend over multiple days. Hydrologic monitoring can be accomplished using weirs (Figure 5-54), flow meters, and level detectors. The new generation of temperature, dissolved oxygen, and conductivity probes allows for automated monitoring. (It should be noted that in many cases the conductivity probes are observing chlorides, which are not generally removed by SCMs.) In many cases monitoring of the downstream stream-channel geomorphology and stream habitat may be more useful than performance monitoring when assessing the effect of the SCM.

The performance monitoring of treatment devices is straightforward and involves determining the pollutant mass inflows and outflows. Performance monitoring of manufactured SCMs has been established through several protocols. An example is TARP, used by multiple states (http://www.dep.state.pa.us/dep/deputate/pollprev/techservices/tarp/). This requires the manufacturer to test their units according to a set protocol of lab or field experiments to set performance criteria. Several TARP member and other states have published revised protocols for their use. These and other similar criteria are evolving and the subject of considerable effort by industry organizations that include the American Society of Civil Engineers.

Stormwater Management Approaches

Finally, much needs to be done to determine the performance of nonstructural SCMs, for which little to no monitoring data are available (see Table 5-2). Currently most practitioners expand upon current hydrologic modeling techniques to simulate these techniques. For example, disconnection of impervious surfaces is often modeled by adding the runoff from the roof or parking area as distributed "rainfall" on the pervious area. Experiments and long-term monitoring are needed for these SCMs.

More information on SCM monitoring is available through the International Stormwater BMP Database (http://www.bmpdatabase.org).

Modeling of SCM performance

Modeling of SCMs is required to understand their individual performance and their effect on the overall watershed. The dispersed nature of their implementation, the wide variety of possible SCM types and goals, and the wide range of rainfall events they are designed for makes modeling of SCMs extremely challenging. For example, to model multiple SCMs on a single site may require simulation of many hydrologic and environmental processes for each SCM in series. Modeling these effects over large watersheds by simulating each SCM is not only impractical, but the noise in the modeling may make the simulation results suspect. Thus, it is critical to understand the model's purpose, limitations, and applicability.

As discussed in Chapter 4, one approach to simulating SCM performance is through mathematical representation of the unit processes. The large volumes of data needed for process-based models generally restrict their use to smaller-scale modeling. For flow this would start with the hydrograph entering the SCM and include infiltration, evapotranspiration, routing through the system, or whatever flow paths were applicable. The environmental processes that would need to be represented could include settling, adsorption, biological transformation, and soil physics. Currently there are no environmental process models that work across the range of SCMs. Rather, the state of art is to use general removal efficiencies from publications such as the International Stormwater BMP Database (http://www.bmpdatabase.org) and the Center for Watershed Protection's National Pollutant Removal Database (CWP, 2000b, 2007b). Unfortunately, this approach has many limitations. The percent removal used on a site and storm basis does not include storm intensity, period between the storms, land use, temperature, management practices, whether other SCMs are upstream, and so forth. It also should be noted that percent removals are a surface water statistic and do not address groundwater issues or include any biogeochemistry.

Mechanistic simulation of the hydrologic processes within an SCM is much advanced compared to environmental simulation, but from a modeling scale it is still evolving. Indeed, models such as the Prince George's County Decision Support System are greatly improved in that the hydrologic simulation of the SCM includes infiltration, but they still do not incorporate the more rigorous soil physics and groundwater interactions. Some models, such as the Stormwater Management Model (SWMM), have the capability to incorporate mechanistic descriptions of the hydrologic processes occurring inside an SCM.

At larger scales, simulation of SCMs is done primarily using lumped models that do not explicitly represent the unit processes but rather the overall effects. For example, the goal may be to model the removal of 2 cm of rainfall from every storm from bioinfiltration SCMs. Thus, all that would be needed is how many SCMs are present and their configuration and what their capabilities are within your watershed. What is critical for these models is to represent the

interrelated processes correctly and to include seasonal effects. Again, the pollutant removal capability of the SCM is represented with removal efficiencies derived from publications.

Regardless of the scale of the model, or the extent to which it is mechanistic or not, nonstructural SCMs are a challenge. Limiting impervious surface or maintenance of forest cover have been modeled because they can be represented as the maintenance of certain land uses. However, aquatic buffers, disconnected impervious surfaces, stormwater education, municipal housekeeping, and most other nonstructural SCMs are problematic. Another challenge from a watershed perspective is determining what volume of pollutants comes from streambank erosion during elevated flows versus from nonpoint source pollution. Most hydrologic models do not include or represent in-stream processes.

In order to move forward with modeling of SCMs, it will be necessary to better understand the unit processes of the different SCMs, and how they differ for hydrology versus transformations. Research is needed to gather performance numbers for the nonstructural SCMs. Until such information is available, it will be virtually impossible to predict that an individual SCM can accomplish a certain level of treatment and thus prevent a nearby receiving water from violating its water quality standard.

DESIGNING SYSTEMS OF STORMWATER CONTROL MEASURES ON A WATERSHED SCALE

Most communities have traditionally relied on stormwater management approaches that result in the design and installation of SCMs on a site-by-site basis. This has created a large number of individual stormwater systems and SCMs that are widely distributed and have become a substantial part of the contemporary urban and suburban landscape. Typically, traditional stormwater infrastructure was designed on a subdivision basis to reduce peak storm flow rates to predevelopment levels for large flood events (> 10-year return period). The problem with the traditional approach is that (1) the majority of storms throughout the year are small and therefore pass through the detention facilities uncontrolled, (2) the criterion of reducing storm flow does not address the need for reducing total storm volume, and (3) the facilities are not designed to work as a system on a watershed scale. In many cases, the site-by-site approach has exacerbated downstream flooding and channel erosion problems as a watershed is gradually built out. For example, McCuen (1979) and Emerson et al. (2005) showed that an unplanned system of site-based SCMs can actually increase flooding on a watershed scale owing to the effect of many facilities discharging into a receiving waterbody in an uncoordinated fashion—causing the very flooding problem the individual basins were built to solve.

With the relatively recent recognition of unacceptable downstream impacts and the regulation of urban stormwater quality has come a rethinking of the design of traditional stormwater systems. It is becoming rapidly understood that stormwater management should occur on a watershed scale to prevent flow control problems from occurring or reducing the chances that they might become worse. In this context, the "watershed scale" refers to the small local watershed to which the individual site drains (i.e., a few square miles within a single municipality). Together, the developer, designer, plan reviewer, owners, and the municipality jointly install and operate a linked and shared system of distributed practices across multiple sites that achieve small watershed objectives. Many metropolitan areas around the country have institutions, such as the Southeast Wisconsin Regional Planning Commission and the Milwaukee

Metropolitan Sewage District, that are doing stormwater master planning to reduce flooding, bank erosion, and water quality problems on a watershed scale.

Designing stormwater management on a watershed scale creates the opportunity to evaluate a system of SCMs and maximize overall effectiveness based on multiple criteria, such as the incremental costs to development beyond traditional stormwater infrastructure, the limitations imposed on land area required for site planning, the effectiveness at improving water quality or attenuating discharges, and aesthetics. Because the benefits that accrue with improved water quality are generally not realized by those entities required to implement SCMs, greater value must be created beyond the functional aspects of the facility if there is to be wide acceptance of SCMs as part of the urban landscape. Stormwater systems designed on a watershed basis are more likely to be seen as a multi-functional resource that can contribute to the overall quality of the urban environment. Potential even exists to make the stormwater system a primary component of the civic framework of the community-elements of the public realm that serve to enhance a community's quality of life like public spaces and parks. For example, in central Minneapolis, redevelopment of a 100-acre area called Heritage Park as a mixed-density residential neighborhood was organized around two parks linked by a parkway that served dual functions of recreation and stormwater management.

Key elements of the watershed approach to designing systems of SCMs are discussed in detail below. They include the following:

- 1. Forecasting the current and future development types.
- 2. Forecasting the scale of current and future development.
- 3. Choosing among on-site, distributed SCMs and larger, consolidated SCMs.
- 4. Defining stressors of concern.
- 5. Determining goals for the receiving water.
- 6. Noting the physical constraints.
- 7. Developing SCM guidance and performance criteria for the local watershed.
- 8. Establishing a trading system.
- 9. Ensuring the safe performance of the drainage network, streams, and floodplains.
- 10. Establishing community objectives for the publically owned elements of stormwater infrastructure.
- 11. Establishing a maintenance plan.

Forecasting the Current and Future Development Types

Forecasting the type of current and future development within the local watershed will guide or shape how individual practices and SCMs are generally assembled at each individual site. The development types that are generally thought of include Greenfield development (small and large scales), redevelopment within established communities and on Brownfield sites, and retrofitting of existing urban areas. These development types range roughly from lower density to higher density impervious cover. Box 5-10 explains how the type of development can dictate stormwater management, discussing two main categories-Greenfield development and *redevelopment* of existing areas. The former refers to development that changes pristine or agricultural land to urban or suburban land uses, frequently low-density residential housing. Redevelopment refers to changing from an existing urban land use to another, usually of higher

347

BOX 5-10

Development Types and their Relationship to the Stormwater System

Development falls into two basic types. Greenfield development requires new infrastructure designed according to contemporary design standards for roads, utilities, and related infrastructure. Redevelopment refers to developed areas undergoing land-use change. In contrast to Greenfields, infrastructure in previously developed areas is often in poor condition, was not built to current design standards, and is inadequate for the new land uses proposed. The stormwater management scenarios common to these types of development are described below.

Greenfield Development

At the largest scale, Greenfield development refers to planned communities at the developing edge of metropolitan areas. Communities of this type often vary from several hundred acres to very large projects that encompassed tens of thousands of acres requiring buildout over decades. They often include the trunk or primary stormwater system as well as open stream and river corridors. The most progressive communities of this type incorporate a significant portion of the area to stormwater systems that exist as surface elements. Such stormwater system elements are typically at the subwatershed scale and provide for consolidated conveyance, detention, and water quality treatment. These elements of the infrastructure can be multi-functional in nature, providing for wildlife habitat, trail corridors, and open-space amenities.

Greenfield development can also occur on a small scale—neighborhoods or individual sites within newly developing areas that are served by the secondary public and tertiary stormwater systems. This smaller-scale, incremental expansion of existing urban patterns is a more typical way for cities to grow. A more limited range of SCMs and innovative stormwater management practices are available on smaller projects of this type, including LID practices.

Redevelopment of Existing Areas

Redevelopment within established communities is typically at the scale of individual sites and occasionally the scale of a small district. The area is usually served by private, on-site systems that convey larger storm events into preexisting stormwater systems that were developed decades ago, either in historic city centers or in "first ring," post-World War II suburbs adjacent to historic city centers. Redevelopment in these areas is typically much denser than the original use. The resulting increase in impervious area, and typically the inadequacy of existing stormwater infrastructure serving the site often results in significant development costs for on-site detention and water quality treatment. Elaborate vaults or related structures, or land area that could be utilized for development, must often be committed to on-site stormwater management to comply with current stormwater regulations.

Brownfields are redevelopments of industrial and often contaminated property at the scale of an individual site, neighborhood, or district. Secondary public systems and private stormwater systems on individual sites typically serve these areas. In many cases, especially in outdated industrial areas, little or no stormwater infrastructure exists, or it is so inadequate as to require replacement. Water quality treatment on contaminated sites may also be necessary. For these reasons, stormwater management in such developments presents special challenges. As an example, the most common methods of remediation of contaminated sites involve capping of contaminated soils or treatment of contaminants in situ, especially where removal of contaminated soils from a site is cost prohibitive. Given that contaminants are still often in place on redeveloped Brownfield sites and must not be disturbed, certain SCMs such as infiltration of stormwater into site soils, or excavation for stormwater piping and other utilities, present special challenges.

density, such as from single-family housing to multi-family housing. Finally, *retrofitting* as used in this report is not a development type but rather the upgrading of stormwater management within an existing land use to meet higher standards.

Table 5-7 shows which SCMs are best suited for Greenfield development (particularly low-density residential), redevelopment of urban areas, and intense industrial redevelopment. The last category is broken out because the suite of SCMs needed is substantially different than for urban redevelopment. Each type of development has a different footprint, impervious cover, open space, land cost, and existing stormwater infrastructure. Consequently, SCMs that are ideally suited for one type of development may be impractical or infeasible for another. One of the main points to be made is that there are more options during Greenfield development than during redevelopment because of existing infrastructure, limited land area, and higher costs in the latter case.

Stormwater Control Measure	Low-Density	Urban	Intense Industrial
	Greenfield Residential	Redevelopment	Redevelopment
Product Substitution	0	•	•
Watershed and Land-Use			0
Planning			
Conservation of Natural Areas		•	0
Impervious Cover Minimization		◆	♦
Earthwork Minimization		◆	♦
Erosion and Sediment Control			
Reforestation and Soil		•	•
Conservation			
Pollution Prevention SCMs	•	•	
Runoff Volume Reduction—	-	•	•
Rainwater Harvesting			
Runoff Reduction—Vegetated		0	•
Runoff Reduction—Subsurface		0	♦
Peak Reduction and Runoff	-	•	0
Treatment			
Runoff Treatment	•	•	
Aquatic Buffers and Managed	•	•	0
Floodplains			
Stream Rehabilitation	0	•	•
Municipal Housekeeping	0	0	NA
IDDE	0	0	0
Stormwater Education	•	•	•
Residential Stewardship		•	NA

TABLE 5-7 Applicability of Stormwater Control Measures by Type of Development

NOTE: ■, always; ●, often; ○, sometimes; ♦, rarely; NA, not applicable.

Forecasting the Scale of Current and Future Development

The choice of what SCMs to use depends on the area that needs to be serviced. It turns out that some SCMs work best over a few acres, whereas others require several dozen acres or more; some are highly effective only for the smallest sites, while others work best at the stream corridor or subwatershed level. Table 5-1 includes a column that is related the scale at which individual SCMs can be applied ("where" column). The SCMs mainly applied at the site scale include runoff volume reduction—rainwater harvesting, runoff treatment like filtering, and pollution prevention SCMs for hotspots. As one goes up in scale, SCMs like runoff volume reduction—vegetated and subsurface, earthwork minimization, and erosion and sediment control take on more of a role. At the largest scales, watershed and land-use planning, conservation of natural areas, reforestation and soil conservation, peak flow reduction, buffers and managed floodplains, stream rehabilitation, municipal housekeeping, IDDE, stormwater education, and residential stewardship play a more important role. Some SCMs are useful at all scales, such as product substitution and impervious cover minimization.

Choosing Among On-Site, Distributed SCMs and Larger, Consolidated SCMs

There are distinct advantages and disadvantages to consider when choosing to use a system of larger, consolidated SCMs versus smaller-scale, on-site SCMs that go beyond their ability to achieve water quality or urban stream health. Smaller, on-site facilities that serve to meet the requirements for residential, commercial, and office developments tend to be privately owned. Typically, flows are directed to porous landscape detention areas or similar SCMs, such that volume and pollutants in stormwater are removed at or near their source. Quite often, these SCMs are relegated to the perimeter project, incorporated into detention ponds, or, at best, developed as landscape infiltration and parking islands and buffers. On-site infiltration of frequent storm events can also reduce the erosive impacts of stormwater volumes on downstream receiving waters. Maintenance is performed by the individual landowner, which is both an advantage because the responsibility and costs for cleanup of pollutants generated by individual properties are equitably distributed, and a disadvantage because ongoing maintenance incurs a significant expense on the part of individual property owners and enforcement of properties not in compliance with required maintenance is difficult. On the negative side, individual SCMs often require additional land, which increases development costs and can encourage sprawl. Monitoring of thousands of SCMs in perpetuity in a typical city creates a significant ongoing public expense, and special training and staffing may be required to maintain SCM effectiveness (especially for subgrade or in-building vaults used in ultra-urban environments). Finally, given that as much as 30 percent of the urban landscape is comprised of public streets and rights-ofway, there are limited opportunities to treat runoff from streets through individual on-site private SCMs. (Notable exceptions are subsurface runoff-volume-reduction SCMs like permeable pavement that require no additional land and promote full development density within a given land parcel because they use the soil areas below roads and the development site for infiltration.)

In contrast, publicly owned, consolidated SCMs are usually constructed as part of larger Greenfield and infill development projects in areas where there is little or no existing infrastructure. This type of facility—usually an infiltration basin, detention basin, wet/dry pond, or stormwater wetland—tends to be significantly larger, serving multiple individual properties.

Ownership is usually by the municipality, but may be a privately managed, quasi-public special district. There must be adequate land available to accommodate the facility and a means of upfront financing to construct the facility. An equitable means of allocating costs for ongoing maintenance must also be identified. However, the advantage of these facilities is that consolidation requires less overall land area, and treatment of public streets and rights-of-way can be addressed. Monitoring and maintenance are typically the responsibility of one organization, allowing for effective ongoing operations to maintain the original function of the facility. If that entity is public, this ensures that the facility will be maintained in perpetuity, allowing for the potential to permanently reduce stormwater volumes and for reduction in the size of downstream stormwater infrastructure. Because consolidated facilities are typically larger than on-site SCMs, mechanized maintenance equipment allows for greater efficiency and lower costs. Finally, consolidated SCMs have great potential for multifunctional uses because wildlife habitat, recreational, and open-space amenities can be integrated to their design. Box 5-11 describes sites of various scales where either consolidated or distributed SCMs were chosen.

Defining Stressors of Concern

The primary pollutants or stressors of concern (and the primary source areas or stormwater hotspots within the watershed likely to produce them) should be carefully defined for the watershed. Although this community decision is made only infrequently, it is critical to ensuring that SCMs are designed to prevent or reduce the maximum load of the pollutants of greatest concern. This choice may be guided by regional water quality priorities (such as nutrient reduction in the Chesapeake Bay or Neuse River watersheds) or may be an outgrowth of the total maximum daily load process where there is known water quality impairment or a listed pollutant. The choice of a pollutant of concern is paramount, since individual SCMs have been shown to have highly variable capabilities to prevent or reduce specific pollutants (see WERF, 2006; ASCE, 2007; CWP, 2007b). In some cases, the capability of SCMs to reduce a specific pollutant may be uncertain or unknown.

Determining Goals for the Receiving Waters

It is important to set biological and public health goals for the receiving water that are achievable given the ultimate impervious cover intended for the local watershed (see the Impervious Cover Model in Box 3-10). If the receiving water is too sensitive to meet these goals, one should consider adjustments to zoning and development codes to reduce the amount of impervious cover. The biological goals may involve a keystone species, such as salmon or trout, a desired state of biological integrity in a stream, or a maximum level of eutrophication in a lake. In other communities, stormwater goals may be driven by the need to protect a solesource drinking water supply (e.g., New York watersheds) or to maintain water contact recreation at a beach, lake, or river. Once again, the watershed goals that are selected have a strong influence on the assembly of SCMs needed to meet them, since individual SCMs vary greatly in their ability to achieve different biological or public health outcomes.

BOX 5-11 Examples of Communities Using Consolidated versus Distributed SCMs

Stapleton Airport New Community

This is a mixed-use, mixed-density New Urbanist community that has been under development for the past 15 years on the 4,500-acre former Stapleton Airport site in central Denver. As shown in Figures 5-55 and 5-56, the stormwater system emphasizes surface conveyance and treatment on individual sites, as well as in consolidated regional facilities.

FIGURE 5-55 The community plan, shown on the left, is organized around two day lighted creeks, formerly buried under airport runways, and a series of secondary conveyances which provide recreational open space within neighborhoods. The image on the right illustrates one of the multi-functional creek corridors. Consolidated stormwater treatment areas and surface conveyances define more traditional park recreation and play areas. Courtesy of Stapleton Redevelopment Foundation.

FIGURE 5-56 A consolidated treatment area adjacent to one of several neighborhoods that have been constructed as part of the project's build-out.

continues next page

Heritage Park Neighborhood Redevelopment

A failed public housing project adjacent to downtown Minneapolis, Minnesota, has been replaced by a mixed-density residential neighborhood. Over 1,200 rental, affordable, and market-rate single- and multi-family housing units have been provided in the 100-acre project area. The neighborhood is organized around two neighborhood parks and a parkway that serve dual functions as neighborhood recreation space and as surface stormwater conveyance and a consolidated treatment system (see Figure 5-57). Water quality treatment is being provided for a combined area of over 660 acres that includes the 100-acre project area and over 500 acres of adjacent neighborhoods. Existing stormwater pipes have been routed through treatment areas with treatment levels ranging from 50 to 85 percent TSS removal, depending on the available land area.

FIGURE 5-57 View of a sediment trap and porous landscape detention area in the central parkway spine of Heritage Park. The sediment trap in the center left of the photo was designed for ease of maintenance access by city crews with standard city maintenance equipment. Courtesy of SRF Consulting Group, Inc.

The High Point Neighborhood

This Seattle project is the largest example of the city's Natural Drainage Systems Project and it illustrates the incorporation of individual SCMs into street rights-of-way as well as a consolidated facility. The on-site, distributed SCMs in this 600-acre neighborhood are swales, permeable pavement, and disconnected downspouts. A large detention pond services the entire region that is much smaller than it would have been had the other SCMs not been built. Both types of SCMs are shown in Figure 5-58.

FIGURE 5-58 Natural drainage system methods have been applied to a 34-block, 1,600-unit mixedincome housing redevelopment project called High Point. Vegetated swales, porous concrete sidewalks, and frontyard rain gardens convey and treat stormwater on-site. On the right is the detention pond for the development.

continues next page

353

BOX 5-11 Continued

Pottsdammer Platz

This project, in the heart of Berlin, Germany, illustrates the potential for stormwater treatment in the densest urban environments by incorporating treatment into building systems and architectural pools that are the centerpiece of a series of urban plazas. As shown in Figure 5-59, on-site, individual SCMs are used to collect stormwater and use it for sanitary purposes.

FIGURE 5-59 Stormwater is collected and stored on-site in a series of vaults. Water is circulated through a series of biofiltration areas and used for toilets and other mechanical systems in the building complex. Large storms overflow into an adjacent canal. Permission pending.

Menomonee Valley Redevelopment, Wisconsin

The 140-acre redevelopment of abandoned railyards illustrates how a Brownfield site within an existing floodplain can be redeveloped using both on-site and consolidated treatment. As shown in Figure 5-60, consolidated treatment is incorporated into park areas which provide recreation for adjacent neighborhoods and serve as a centerpiece for a developing light industrial area that provides jobs to surrounding neighborhoods. Treatment on individual privately owned parcels is limited to the removal of larger sediments and debris only, making more land available for development. The volume of water that, by regulation, must be captured and treated on individual sites is conveyed through a conventional subsurface system for treatment in park areas.

FIGURE 5-60 Illustrations show consolidated treatment areas in proposed parks. The image on the left illustrates the fair weather condition, the center image the water quality capture volume, and the image on the right the 100-year storm event. Construction was completed in spring 2007.

Noting the Physical Constraints

The specific physical constraints of the watershed terrain and the development pattern will influence the selection and assembly of SCMs. The application of SCMs must be customized in every watershed to reflect its unique terrain, such as karst, high water tables, low or high slopes, freeze-thaw depth, soil types, and underlying geology. Each SCM has different restrictions or constraints associated with these terrain factors. Consequently, the SCM prescription changes as one moves from one physiographic region to another (e.g., the flat coastal plain, the rolling Piedmont, the ridge and valley, and mountainous headwaters).

Developing SCM Guidance and Performance Criteria for the Local Watershed

Based on the foregoing factors, the community should establish specific sizing, selection, and design requirements for SCMs. These SCM performance criteria may be established in a local, regional, or state stormwater design manual, or by reference in a local watershed plan. The Minnesota Stormwater Steering Committee (MSSC, 2005) provides a good example of how SCM guidance can be customized to protect specific types of receiving waters (e.g., high-quality lakes, trout streams, drinking water reservoirs, and impaired waters). In general, the watershed-or receiving water-based criteria are more specific and detailed than would be found in a regional or statewide stormwater manual. For example, the local stormwater guidance criteria may be more prescriptive with respect to runoff reduction and SCM sizing requirements, outline a preferred sequence for SCMs, and indicate where SCMs should (or should not) be located in the watershed. Like the identification of stressors or pollutants of concerns, this step is rarely taken under current paradigms of stormwater management.

Establishing a Trading System

A stormwater trading or offset system is critical to situations when on-site SCMs are not feasible or desirable in the watershed. Communities may choose to establish some kind of stormwater trading or mitigation system in the event that full compliance is not possible due to physical constraints or because it is more cost effective or equitable to achieve pollutant reduction elsewhere in the local watershed. The most common example is providing an offset fee based on the cost to remove an equivalent amount of pollutants (such as phosphorus in the Maryland Critical Area—MD DNR, 2003). This kind of trading can provide for greater cost equity between low-cost Greenfield sites and higher-cost ultra-urban sites.

Ensuring the Safe and Effective Performance of the Drainage Network, Streams, and Floodplains

The urban water system is not solely designed to manage the quality of runoff. It also must be capable of safely handling flooding from extreme storms to protect life and property. Consequently, communities need to ensure that their stormwater infrastructure can prevent increased flooding caused by development (and possibly exacerbated future climate change). In

addition, many SCMs must be designed to safely pass extreme storms when they do occur. This usually requires a watershed approach to stormwater management to ensure that quality and quantity control are integrated together, with an emphasis on the connection and effective use of conveyance channels, streams, riparian buffers, and floodplains.

Establishing Community Objectives for the Publicly Owned Elements of Stormwater Infrastructure

The stormwater infrastructure in a community normally occupies a considerable surface area of the landscape once all the SCMs, drainage easements, buffers, and floodplains are added together. Consequently, communities may require that individual SCM elements are designed to achieve multiple objectives, such as landscaping, parks, recreation, greenways, trails, habitat, sustainability, and other community amenities (as discussed extensively above). In other cases, communities may want to ensure that SCMs do not cause safety or vector problems and that they look attractive. The best way to maximize community benefits is to provide clear guidance in local SCM criteria at the site level and to ensure that local watershed plans provide an overall context for their implementation.

Establishing an Inspection and Maintenance Plan

The long-term performance of any SCM is fundamentally linked to the frequency of inspections and maintenance. As a result, NPDES stormwater permit conditions for industrial, construction, and municipal permittees specify that pollution prevention, construction, and postconstruction SCMs be adequately maintained. MS4 communities are also required under NPDES stormwater permits to track, inspect, and ensure the maintenance of the collective system of SCMs and stormwater infrastructure within their jurisdiction. In larger communities, this can involve hundreds or even thousands of individual SCMs located on either public or private property. In these situations, communities need to devise a workable model that will be used to operate, inspect, and maintain the stormwater infrastructure across their local watershed. Communities have the lead responsibility in their MS4 permits to assure that SCMs are maintained properly to ensure their continued function and performance over time. They can elect to assign the responsibility to the public sector, the private sector (e.g., property owners and homeowners association), or a hybrid of the two, but under their MS4 permits they have ultimate responsibility to ensure that SCM maintenance actually occurs. This entails assigning legal and financial responsibilities to the owners of each SCM element in the watershed, as well as maintaining a tracking and enforcement system to ensure compliance.

Summary

Taking all of the elements above into consideration, the emerging goal of stormwater management is to mimic, as much as possible, the hydrological and water quality processes of natural systems as rain travels from the roof to the stream through combined application of a series of practices throughout the entire development site and extending to the stream corridor.

The series of SCMs incrementally reduces the volume of stormwater on its way to the stream, thereby reducing the amount of conventional stormwater infrastructure required.

There is no single SCM prescription that can be applied to each kind of development; rather, a combination of interacting practices must be used for full and effective treatment. For a low-density residential Greenfield setting, a combination of SCMs that might be implemented is illustrated in Table 5-8. There are many successful examples of SCMs in this context and at different scales. By contrast, Tables 5-9 and 5-10 outline how the general "roof-to-stream" stormwater approach is adapted for intense industrial operations and urban redevelopment sites, respectively. As can be seen, these development situations require a differ combination of SCMs and practices to address the unique design challenges of dense urban environments. The tables are meant to be illustrative of certain situations; other scenarios, such as commercial development, would likely require additional tables.

SCM	What it Is	What it Replaces	How it Works
Land-Use Planning	Early site assessment	Doing SWM design after site layout	Map and plan submitted at earliest stage of development review showing environmental, drainage, and soil features
Conservation of Natural Areas	Maximize forest canopy	Mass clearing	Preservation of priority forests and reforestation of turf areas to intercept rainfall
Earthwork Minimization	Conserve soils and contours	Mass grading and soil compaction	Construction practices to conserve soil structure and only disturb a small site footprint
Impervious Cover Minimization	Better site design	Large streets, lots and cul-de-sacs	Narrower streets, permeable driveways, clustering lots, and other actions to reduce site IC
Runoff Volume Reduction— Rainwater Harvesting	Utilize rooftop runoff	Direct connected roof leaders	A series of practices to capture, disconnect, store, infiltrate, or harvest rooftop runoff
Runoff Volume Reduction—	Frontyard bioretention	Positive drainage from roof to road	Grading frontyard to treat roof, lawn, and driveway runoff using shallow bioretention
Vegetated	Dry swales	Curb/gutter and storm drain pipes	Shallow, well-drained bioretention swales located in the street right- of-way
Peak Reduction and Runoff Treatment	Linear wetlands	Large detention ponds	Long, multi-cell, forested wetlands located in the stormwater conveyance system
Aquatic Buffers and Managed Floodplains	Stream buffer management	Unmanaged stream buffers	Active reforestation of buffers and restoration of degraded streams

TABLE 5-8 From the Roof to the Stream: SCMs in a Residential Greenfield

Note: SCMs are applied in a series, although all of the above may not be needed at a given residential site. This "roof-to-stream" approach works best for low- to medium-density residential development.

In summary, a watershed approach for organizing site-based stormwater decisions is generally superior to making site-based decisions in isolation. Communities that adopt the preceding watershed elements not only can maximize the performance of the entire system of SCMs to meet local watershed objectives, but also can maximize other urban functions, reduce total costs, and reduce future maintenance burdens.

SCM Category	What it Is	What it Replaces	How it Works
Pollution	Dusing as mounting	Nome	Analysis of the locations and connections of the
Prevention	Drainage mapping	No map	Analysis of the locations and connections of the stormwater and wastewater infrastructure from the site
	Hotspot site	Visual inspection	Systematic assessment of runoff problems and
	investigation		pollution prevention opportunities at the site
	Rooftop	Uncontrolled	Use of alternative roof surfaces or coatings to
	management	rooftop runoff	reduce metal runoff, and disconnection of roof runoff for stormwater treatment
	Exterior maintenance practices	Routine plant maintenance	Special practices to reduce discharges during painting, powerwashing, cleaning, sealcoating and
	-		sandplasting
	Extending roofs for no	Exposed hotspot	Extending covers over susceptible
	exposure	operations	loading/unloading, fueling, outdoor storage, and waste management operations
	Vehicular	Uncontrolled	Pollution prevention practices applied to vehicle
	pollution prevention	vehicle operations	repair, washing, fueling, and parking operations
	Outdoor pollution	Outdoor materials	Prevent rainwater from contact with potential
	prevention	storage	pollutants by covering, secondary containment, or
	practices		diversion from storm-drain system
	Waste management practices	Exposed dumpster or waste streams	Improved dumpster location, management, and treatment to prevent contact with rainwater or runoff
	Spill control	No plan	Develop and test response to spills to the storm-
	plan and response	- · · · F · · · ·	drain system, train employees, and have spill control kits available on-site
	Greenscaping	Routine landscape and turf maintenance	Reduce use of pesticides, fertilization, and irrigation in pervious areas, and conversion of turf to forest
	Employee stewardship	Lack of stormwater awareness	Regular ongoing training of employees on stormwater problems and pollution prevention practices
	Site housekeeping and	Dirty site and	Regular sweeping, storm-drain cleanouts, litter
	stormwater	unmaintained	pickup, and maintenance of stormwater
	maintenance	infrastructure	infrastructure
Runoff	Stormwater retrofitting	No stormwater	Filtering retrofits to remove pollutants from most
Treatment		treatment	severe hotspot areas
IDDE	Outfall analysis	No monitoring	Monitoring of outfall quality to measure effectiveness

TABLE 5-9 From the Roof to the Outfall: SCMs in an Industrial Context

Note: While many SCMs are used at each individual industrial site, the exact combination depends on the specific configuration, operations, and footprint of each site.

SCM	What it Is	What it Replaces	How it Works
Category			
Impervious Cover Minimization	Site design to prevent pollution	Conventional site design	Designing redevelopment footprint to restore natural area remnants, minimize needless impervious cover, and reduce hotspot potential
Runoff Volume Reduction—	Treatment on the roof	Traditional rooftops	Use of green rooftops to reduce runoff generated from roof surfaces
Rainwater Harvesting and Vegetated	Rooftop runoff treatment	Directly connected roof leaders	Use of rain tanks, cisterns, and rooftop disconnection to capture, store, and treat runoff
	Runoff treatment in landscaping	Traditional landscaping	Use of foundation planters and bioretention areas to treat runoff from parking lots and rooftops
Soil Conservation and Reforestation	Runoff reduction in pervious areas	Impervious or compacted soils	Reducing runoff from compacted soils through tilling and compost amendments, and in some cases, removal of unneeded impervious cover
	Increase urban tree canopy	Turf or landscaping	Providing adequate rooting volume to develop mature tree canopy to intercept rainfall
Runoff Reduction— Subsurface	Increase permeability of impervious cover	Hard asphalt or concrete	Use of permeable pavers, porous concrete, and similar products to decrease runoff generation from parking lots and other hard surfaces.
Runoff Reduction— Vegetated	Runoff treatment in the street	Sidewalks, curb and gutter, and storm drains	Use of expanded tree pits, dry swales and street bioretention cells to further treat runoff in the street or its right-of-way
Runoff Treatment	Underground treatment	Catch basins and storm-drain pipes	Use of underground sand filters and other practices to treat hotspot runoff quality at the site
Municipal Housekeeping	Street cleaning	Unswept streets	Targeted street cleaning on priority streets to remove trash and gross solids
Watershed Planning	Off-site stormwater treatment or mitigation	On-site waivers	Stormwater retrofits or restoration projects elsewhere in the watershed to compensate for stormwater requirements that cannot be met onsite

TABLE 5-10 From the Roof to the Street: SCMs in a Redevelopment Context

Note: SCMs are applied in a series, although all of the above may not be needed at a given redevelopment site.

COST, FINANCE OPTIONS, AND INCENTIVES

Municipal Stormwater Financing

To be financially sustainable, stormwater programs must develop a stable long-term funding source. The activities common to most municipal stormwater programs (such as education, development design review, inspection, and enforcement) are funded through general tax revenues, most commonly property taxes and sales taxes (NAFSMA, 2006), which is problematic for several reasons. First, stormwater management financed through general tax receipts does not link or attempt to link financial obligation with services received. The absence of such links can reduce the ability of a municipality to adequately plan and meet basic stormwater management obligations. Second, when funded through general tax revenues, stormwater programs must compete with other municipal programs and funding obligations. Finally, in programs funded by general tax revenue, responsibilities for stormwater management tend to be distributed into the work responsibilities of existing and multiple departments (e.g., public works, planning, etc.). One recent survey conducted in the Charles River watershed in Massachusetts found that three-quarters of local stormwater management programs did not have staff dedicated exclusively for stormwater management (Charles River Watershed Association, 2007).

Increasingly, many municipalities are establishing stormwater utilities to manage stormwater (Kaspersen, 2000). Most stormwater utilities are created as a separate organizational entity with a dedicated, self-sustaining source of funding. The typical stormwater utility generates the large majority of revenue through user fees (Florida Stormwater Association, 2003; Black and Veatch, 2005; NAFSMA, 2006). User fees are established and set so as to have a close nexus to the cost of providing the service and, thus, are most commonly based on the amount of impervious surface, frequently measured in terms of equivalent residential unit. For example, an average single-family residence may create 3,000 square feet of impervious surface (roof and driveway area). A per-unit charge is then assigned to this "equivalent runoff unit." To simplify program administration, utilities typically assign a flat rate for residential properties (customer class average) (NAFSMA, 2006). Nonresidential properties are then charged individually based on the total amount of impervious surface (square feet or equivalent runoff units) of the parcel. Fees are sometimes also based on gross area (total area of a parcel) or some combination of gross area and a development intensity measure (Duncan, 2004; NAFSMA, 2006).

Municipalities have the legal authority to create stormwater utilities in most states (Lehner et al., 1999). In addition to creating the utility, a municipality will generally establish the utility rate structure in a separate ordinance. Separating the ordinances allows the municipality flexibility to change the rate structure without revising the ordinance governing the entire utility (Lehner et al., 1999). While municipalities generally have the authority to collect fees, some states have legal restrictions on the ability of local governments to levy taxes (Lehner et al., 1999; NAFSMA, 2006). The legal distinction between a tax and a fee is the most common legal challenge to a stormwater utility. For example, stormwater fees have been subject to litigation in at least 17 states (NAFSMA, 2006). To avoid legal challenges, care must be taken to meet a number of legal tests that distinguish a fee for a specific service and a general tax.

Stormwater utilities typically bill monthly, and fees range widely. A recent survey of U.S. stormwater utilities reported that fees for residential households range from \$1 to \$14 per month, but a typical residential household rate is in the range of \$3 to \$6 (Black and Veatch, 2005). Despite the dedicated funding source, the majority of stormwater utilities responding to a recent survey (55 percent) indicated that current funding levels were either inadequate or just adequate to meet their most urgent needs (Black and Veatch, 2005).

Both municipal and state programs can finance administrative programming costs through stormwater permitting fees. Municipal stormwater programs can use separate fees to finance inspection activities. For instance, inspection fees can be charged to cover the costs of ensuring that SCMs are adequately planned, installed, or maintained (Debo and Reese, 2003). Stormwater management programs can also ensure adequate funding for installation and maintenance of SCMs by requiring responsible parties to post financial assurances. Performance bonds, letters of credit, and cash escrow are all examples of financial assurances that require up-front financial payments to ensure that longer-term actions or activities are successfully carried out. North Carolina's model stormwater ordinance recommends that the amount of a maintenance performance security (bond, cash escrow, etc.) be based on the present value of an annuity based on both inspection costs and operation and maintenance costs (Whisnant, 2007).

In addition to fees or taxes, exactions such as impact fees can also be used as a way to finance municipal stormwater infrastructure investments (Debo and Reese, 2003). An impact fee is a one-time charge levied on new development. The fee is based on the costs to finance the infrastructure needed to service the new development. The ability to levy impact fees varies between states. Municipalities that use impact fees are also required to show a close nexus between the size of the fee and the level of benefits provided by the fee; a failure to do so exposes local government to law suits (Keller, 2003). Compared to other funding sources, impact fees also exhibit greater variability in revenue flows because the amount of funds collected is dependent on development growth.

Bonds and grants can supplement the funding sources identified above. Bonds and loans tend to smooth payments over time for large up-front stormwater investments. For example, state and federal loan programs (state revolving funds) provide long-term, low-interest loans to local governments or capital investments (Keller, 2003). In addition, grant opportunities are sometimes available from state and federal sources to help pay for specific elements of local stormwater management programs.

Municipalities require funds to meet federal and state stormwater requirements. Understanding of the municipal costs incurred by implementing stormwater regulations under the Phase I and II stormwater rules, however, is incomplete (GAO, 2007). Of the six minimum measures of a municipal stormwater program (public education, public involvement, illicit discharge detection and elimination, construction site runoff control, post-construction stormwater management, and pollution prevention/good housekeeping—see Chapter 2), a recent study of six California municipalities found that pollution prevention activities (primarily street sweeping) accounted for over 60 percent of all municipal stormwater management costs in these communities (Currier et al., 2005). Annual per-household costs ranged from \$18 to \$46.

Stormwater Cost Review

Conceptually, the costs of providing SCMs are all opportunity costs (EPA, 2000). Opportunity costs are the value of alternatives (next best) given up by society to achieve a particular outcome. In the case of stormwater control, opportunity costs include direct costs necessary to control and treat runoff such as capital and construction costs and the present value of annual operation and maintenance costs. Initial installation costs should also include the value of foregone opportunities on the land used for stormwater control, typically measured as land acquisition (land price).

Costs also include public and private resources incurred in the administration of the stormwater management program. Private-sector costs might include time and administrative costs associated with permitting programs. Public costs include agency monitoring and enforcement costs.

Opportunity costs also include other values that might be given up as a consequence of stormwater management. For example, the creation of a wet pond in a residential area might be opposed because of perceived safety, aesthetic, or nuisance concerns (undesirable insect or animal species). In this case, the diminished satisfaction of nearby property owners is an opportunity cost associated with the wet pond. On the other hand, if SCMs are considered a neighborhood amenity (e.g., a constructed wetland in a park setting), opportunity costs may decrease. In addition, costs of a given practice may be reduced by reducing costs elsewhere. For example, increasing on-site infiltration rates can reduce off-site storage costs by reducing the volume and slowing the release of runoff.

In general the cost of SCMs is incompletely understood and significant gaps exist in the literature. More systematic research has been conducted on the cost of conventional stormwater SCMs (wet ponds, detention basins, etc.), with less research applied to more recent, smaller-scale, on-site infiltration practices. Cost research is challenging given that stormwater treatment exhibits considerable site-specific variation resulting from different soil, topography, climatic conditions, local economic conditions, and regulatory requirements (Lambe et al., 2005).

The literature on stormwater costs tend to be oriented around construction costs of particular types of SCMs (Wiegand et al., 1986; SWRPC, 1991; Brown and Schueler, 1997; Heaney et al., 2002; Sample et al., 2003; Wossink and Hunt, 2003; Caltrans, 2004; Narayanan and Pitt, 2006; DeWoody, 2007). In many of these studies, construction cost functions are estimated statistically based on a sample of recently installed SCMs and the observed total construction costs. Observed costs are then related statistically to characteristics that influence cost such as practice size. Other studies estimate costs by identifying the individual components of a construction project (pipes, excavation, materials, labor, etc.), estimating unit costs of each component, and then summing all project components. These studies generally find that construction costs decrease on a per-unit basis as the overall size (expressed in volume or drainage area) of the SCM increases (Lambe et al., 2005). These within-practice economies of scale are found across certain SCMs including wet ponds, detention ponds, and constructed wetlands. Several empirical studies, however, failed to find evidence of economies of scale for bioretention practices (Brown and Schueler, 1997; Wossink and Hunt, 2003).

Increasing attention has been paid to small-scale practices, including efforts to increase infiltration and retain water through such means as green roofs, permeable pavements, rain barrels, and rain gardens (under the label of LID). The costs of these practices are less well studied compared to the other stormwater practices identified above. In general, per-unit

construction and design costs exceed larger-scale SCMs (Low Impact Development Center, 2007). Higher construction costs, however, may be offset to various degrees by reducing the investments in stormwater conveyance and storage infrastructure (i.e., less storage volume is needed) (CWP, 1998a, 2000a; Low Impact Development Center, 2007). Others have suggested that per-unit costs to reduce runoff may be less for these small-scale distributed practices because of higher infiltration rates and retention rates (MacMullan and Reich, 2007).

Compared to construction costs, less is known about the operation and maintenance costs of SCMs (Wossink and Hunt, 2003; Lambe et al., 2005; MacMullan and Reich, 2007). Most stormwater practices are not maintenance free and can create financial and long-term management obligations for responsible parties (Hager, 2003). Cost-estimation programs and procedures have been developed to estimate operation and maintenance costs as well as construction costs (SWRPC, 1991; Lambe et al., 2005; Narayanan and Pitt, 2006), but examination of observed maintenance costs is less common. Based on estimates from Wossink and Hunt (2003), the total present value of maintenance costs over 20 years can range from 15 to 70 percent of total capital construction costs for wet ponds and constructed wetlands and appear generally consistent with percentages reported in EPA (1999). Operation and maintenance costs were also reported to be a substantial percentage of construction costs of infiltration pits and bioretention areas in Southern California (DeWoody, 2007). Others estimate that over the life of many SCMs, maintenance costs may equal construction costs (CWP, 2000a). In general, maintenance costs tend to decrease as a percentage of total SCM cost as the total size of the SCM increases (Wossink and Hunt, 2003).

Very few quantifiable estimates are available for public and private regulatory compliance costs. Compliance costs could include both initial permitting costs (labor and time delays) of gaining regulatory approval for a particular stormwater design to post-construction compliance costs (administration, inspection monitoring, and enforcement). Compliance monitoring is a particular concern if a stormwater management program relies on widespread use of small-scale distributed on-site practices (Hager, 2003). Unlike larger-scale or regional stormwater facilities that might be located on public lands or on private lands with an active stormwater management plan, a multitude of smaller SCMs would increase monitoring and inspection times by increasing the number of SCMs. Furthermore, municipal governments may be reluctant to undertake enforcement actions against citizens with SCMs located on private land.

Land costs tend to be site specific and exhibit a great deal of spatial variation. Some types of SCMs, such as constructed wetlands, are more land intensive than others. In highly urban areas, land costs may be the single biggest cost outlay of land-intensive SCMs (Wossink and Hunt, 2003).

In general, cost analyses generally find that the cost to treat a given acreage or volume of water is less for regional SCMs than for smaller-scale SCMs (Brown and Schueler, 1997; EPA, 1999; Wossink and Hunt, 2003). For example, considering maintenance, capital construction, and land costs, recent estimates for North Carolina indicate that annual costs for wet ponds and constructed wetlands range between \$100 and \$3,000 per treated acre (typically less than \$1,000). Per-acre annual costs for bioretention and sand filters typically ranged between \$300 and \$3,500, and between \$4,500 and 8,500, respectively. However, if SCMs face space constraints, bioretention areas can become more cost effective. Furthermore, other classes of small, on-site practices, such as grass swales and filter strips, can sometimes be implemented for relatively low cost.

There are exceptions to the general conclusion that larger-scale stormwater practices tend to be less costly on a per-unit basis than more numerous and distributed on-site practices. For instance, in Sun Valley, California, a recent study indicates that installing small distributed practices (infiltration practices, porous pavement, rain gardens) was more cost effective than centralized approaches for a retrofit program (Cutter et al., 2008). In this particular setting, the difference tended to revolve around the high land costs in the urbanized setting. Small-scale practices can be placed on low-valued land or integrated into existing landscaping, reducing land costs. Centralized stormwater facilities require substantial purchases of high-priced urban properties. Similarly, small distributed practices (porous pavement, green roofs, rain gardens, and constructed wetlands) can also provide a more cost-effective approach to reducing combined sewer overflow (CSO) discharges in a highly urban setting than large structural CSO controls (storage tanks) (Montalto et al., 2007).

SCMs are now a part of most development processes and consequently will increase the cost of the development. Randolph et al. (2006) report on the cost of complying with stormwater and sediment and erosion control regulations for six developments in the Washington, D.C., metropolitan area. These costs include primarily stormwater facility construction and land costs. The findings from these case studies indicate that stormwater and erosion and sediment control comprised about 60 percent of all environmental-related compliance costs for the residential developments studied and added about \$5,000 to the average price of a home. Nationwide, stormwater and erosion and sediment controls are estimated to add \$1,500 to \$9,000 to the cost of a new residential dwelling unit (Randolph et al., 2006).

As a means to control targeted chemical constituents, SCMs may be an expensive control option relative to other control alternatives. For example, nutrients from anthropocentric sources are an increasing water quality concern for many fresh and marine waters. Some states (e.g., Virginia, Maryland, and North Carolina) require stormwater programs to achieve specific nutrient (nitrogen or phosphorus) stormwater standards. The construction, maintenance, and land costs of reducing nitrogen discharge from residential developments using bioretention areas, wet ponds, constructed wetlands, or sand filters range from \$60 to \$2,500 per pound (Aultman, 2007). These control costs can be an order of magnitude higher than nitrogen control costs from point sources or agricultural nonpoint sources. The high per-pound removal costs are due in part to the relatively low mass load of nutrients carried in stormwater runoff. These estimates, however, assume that all costs are allocated exclusively to nitrogen removal. The high perpound removal costs from the control of single pollutants highlight the importance of achieving ancillary and offsetting benefits associated with stormwater control (e.g., removal of other pollutants of concern, stream-channel protection from volume reduction, and enhancement of neighborhood amenities).

It should also be noted that installing SCMs in an existing built environment tends to be significantly more expensive than new construction. Construction costs for retrofitted extended detention ponds, wet ponds, and constructed wetlands were estimated to be two to seven times more costly than new SCMs (Schueler et al., 2007). Retrofit costs can be higher for a variety of reasons, including the need to upgrade existing infrastructure (culverts, drainage channels, etc.) to meet contemporary engineering and regulatory requirements. Retrofitting a single existing residential city block in Seattle with a new stormwater drainage system that included reduced street widths, biofiltration practices, and enhanced vegetation cost an estimated \$850,000 (see Box 5-5; Seattle Public Utilities, 2007). Estimates suggested that the costs might have been even

higher using more conventional stormwater piping/drainage systems (Chris May, personal communication, August 2007; EPA, 2007).

As discussed earlier in the chapter, stormwater runoff can be reduced and managed through better site design to reduce impervious cover. Low- to medium-density developments can reduce impervious cover through cluster development patterns that preserve open space and reduce lot sizes. Impervious surfaces and infiltration rates could be altered by any number of site-design characteristics such as reduction in street widths, reduction in the number of cul-desacs, and different setback requirements (CWP, 2000a). Finally, impervious surface per capita could be substantially reduced by increasing the population per dwelling unit.

Quantifying the cost of many of these design features is more challenging, and the literature is much less developed or conclusive than the literature on conventional SCM costs. Many design features described above (clustering, reduced setbacks, narrower streets, less curb and gutter) can significantly lower construction and infrastructure costs (CWP, 2001; EPA, 2007). Such features may reduce the capital cost of subdivision development by 10 to 33 percent (CWP, 2000a).

On the other hand, the evidence is unclear whether consumers are willing to pay for these design features. If consumers prefer features typically associated with conventional developments (large suburban lot, for example), then some aspects of alternative development designs/patterns could impose an opportunity cost on builders and buyers alike in the form of reduced housing value. For example, most statistical studies in the U.S. housing market find that consumers prefer homes with larger lots and are willing to pay premiums for homes located on cul-de-sacs, presumably for privacy and safety reasons (Dubin, 1998; Fina and Shabman, 1999; Song and Knapp, 2003). These effects, however, might be partly or completely offset by the higher value consumers might place on the proximity of open space to their homes (Palmquist, 1980; Cheshire and Sheppard, 1995; Qiu et al., 2006). Anecdotal evidence indicates that residents feel that Seattle's Street Edge Alternative program (the natural drainage system retrofit program that combines swales, bioretention and reduced impervious surfaces) increased their property values (City of Seattle, undated). Studies that have attempted to assess the net change in costs are limited, but some evidence suggests that the amenity values of lower-impact designs may match or outweigh the disamentities (Song and Knapp, 2003).

Incentives for Stormwater Management

The dominant policy approach to controlling effluent discharge under the Clean Water Act is through the application of technology-based effluent standards or the requirements to install particular technologies or practices. Some note that this general policy approach may not provide the regulated community with (1) incentives to invest in pollution prevention activities beyond what is required in the standard or with (2) sufficient opportunities or flexibility to lower overall compliance costs (Parikh et al., 2005).

A loosely grouped set of policies, called here "incentive-based,"¹ aim to create financial incentives to manage effluent or volume discharge. Such policies tend to be classified into two groups: price- and quantity-based mechanisms (Stavins, 2000; Parikh et al., 2005). Price-based mechanisms are created when government creates a charge (tax, fee, etc.) or subsidy (payment)

¹ These policies are sometimes called "market-based" policies, but that term will not be used here because many of the incentive-based policies discussed fail to contain features characteristic of a market system.

on an outcome that government wants to either discourage or encourage. Ideally, the price would be placed on a target outcome (effluents discharged, volume of water released, etc.) and not on the means to achieve that outcome end (such as a tax or subsidy to adopt specific technologies or practices).² Quantity-based policies require government to establish some binding limit or cap on an outcome (e.g., mass load of effluent, volume of runoff, etc.) for an identified group of dischargers, but then allow the regulated parties to "trade" responsibilities for meeting that limit or cap. The opportunity to trade creates the financial incentive. The trading concept is discussed in greater detail in Chapter 6, while this section focuses on price-based incentives.

Some stormwater utilities offer reductions in stormwater fees to landowners who voluntarily undertake activities to reduce runoff from their parcels (Doll and Lindsey, 1999; Keller, 2003). The reduction in tax obligations, called credits, can be interpreted as a financial subsidy or payment for implementing on-site runoff controls. Credit payments are typically made based on the volume of water detained. For example, as part of Portland, Oregon's Clean River Rewards program, residents and commercial property owners can reduce their stormwater utility fee by as much as 35 percent by reducing stormwater runoff from existing developed properties (Portland Bureau of Environmental Services, 2008a). Residential and commercial property owners are given a number of ways to reduce runoff to receive this financial benefit. In addition, Portland has a downspout disconnection program that aims to reduce discharge into CSOs in targeted areas in the city. Property owners may be reimbursed up to \$53 per eligible downspout (Portland Bureau of Environmental Services, 2008b).

Alternatively, stormwater utilities could (where allowed) also use fee revenue to provide private incentives for stormwater control through a competitive bidding process. Such a bidding process ("reverse auction") would request proposals for stormwater reduction projects and fund projects that reduce volume at the least cost. Proposed investments that can meet the program objectives at the lowest per unit cost would receive payments. Such a program creates private incentives to search for low-cost stormwater investments by creating a price for runoff volume reduction. The bidding program could also be used to identify cost-effective stormwater investments in areas targeted for enhanced levels of restoration. A bidding program has been proposed as a way to lower overall costs of a stormwater program in Southern California (Cutter et al., 2008). Revenue to fund such a competitive bid program could come from a variety of sources including stormwater utility fees or fees paid into an in lieu fee program.

Finally, impact fees on new developments can be structured in a way to create incentives to reduce stormwater runoff volumes. Charges based on runoff volume (or a surrogate measure like impervious surface) can provide an incentive for developers to reduce the volume of new runoff created.

 $^{^{2}}$ The literature on what level to set the price (tax or subsidy) is vast, complex, and controversial. Parikh et al. (2005) seem to wander into this debate (perhaps unwittingly) by making a distinction between taxes based on some optimality rule (marginal damage costs equal to marginal control costs) and those based on some other sort of decision rule. Without getting into the specifics of this debate here, this discussion will simply assert more generally that price-based incentive policies structure taxes and subsidies to induce desirable behavioral change (rather than simply to raise revenue).

CHALLENGES TO IMPLEMENTATION OF WATERSHED-BASED MANAGEMENT AND STORMWATER CONTROL MEASURES

The implementation of SCMs has seen variable success. Environmental awareness, threats to potable water sources or to habitat for threatened and endangered species, problems with combined sewer overflows, and other environmental factors have caused cities such as Portland, Oregon; Seattle, Washington; Chicago, Illinois; and Austin, Texas to aggressively pursue widespread implementation of a broad range of SCMs. In contrast, other cities have been slow to implement recommended practices, for many reasons. This is particularly true for nonstructural SCMs, despite their popularity among planners and regulators for the past two decades. A host of real and perceived concerns about individual nonstructural SCMs are often raised regarding development costs, market acceptance, fire safety, emergency access, traffic and parking congestion, basement seepage, pedestrian safety, backyard flooding, nuisance conditions, maintenance, and winter snow removal operations. While most of these concerns are unfounded, they contribute to a culture of inertia when it comes to code change (CWP, 1998a, 2000a). As a result, some nonstructural SCMs are discouraged or even prohibited by local development codes. Very few communities make the consideration of nonstructural practices a required element of stormwater plan review, nor do they require that they be considered early in the site layout and design process when their effectiveness would be maximized. Finally, many engineers and planners feel they can fully comply with existing stormwater criteria without resorting to nonstructural SCMs.

Cost Issues

There are numerous cost issues that have proven to be significant barriers to the use of innovative SCMs. Special construction techniques required for the proper design and function of SCMs, specially formulated manufactured soils, expensive subsurface vaults, and increased land area requirements as a result of increased stormwater storage requirements can significantly increase site development costs. For smaller projects in highly urbanized areas where land costs are high, there can be a disproportionately large expense to comply with stormwater regulations, causing developers to seek, and often receive, exemption from requirements.

Sediment removal and related maintenance activities required to ensure the proper ongoing functioning of SCMs are activities that are not a part of normal building maintenance. Data on maintenance costs of SCMs on privately owned facilities are limited, and management companies responsible for commercial and office building maintenance have yet to provide SCM maintenance as part of their services.

Additional costs are incurred when development review periods by public agencies get extended because of an increased level of design review required to evaluate the compliance of SCMs with city ordinances. Additional review increases development costs and extends the design process. Even with specialized training for city staff to evaluate SCM submittals, deviation from the most basic type of SCM design seems to require extended review and documentation.

Cost concerns are partly responsible for the markedly slow implementation of the stormwater program. The federal deadlines for permit coverage have long passed; in fact more than 14 years have lapsed for medium and large municipalities. A good part of the delay can be

explained by the resistance of states and local governments to the unknown cost burden. Cities contend that the permit requirements are unreasonable, expensive, and unrealistic to achieve. Many local government officials view some permit provisions such as LID or better site design as intrusion into the land-use authority of local governments.

As discussed in Chapter 2, the U.S. Congress provided no start-up or upgrade financial assistance, unlike what it did for municipally owned and operated wastewater treatment plants after the promulgation of the NPDES permit program under the Clean Water Act in 1972. Local governments have been reluctant to tax residents or create stormwater utilities. States like California and Michigan even have laws that require voter approval in order for local governments to assess new fees. Thus, to implement the NPDES stormwater program, states have had to largely rely on stormwater permit fees collected to support a skeletal to modest staff for program oversight. In Denver, and presumably in other cities, there is no reduction in stormwater fees when impervious area is reduced because of construction of on-site SCMs. This amounts to a disincentive to do the "right thing." Meanwhile, the overall federal budget for the NPDES program, including stormwater, has been declining.

Long-Term Maintenance of Stormwater Control Measures

One of the weakest parts of most stormwater management programs is the lack of information about, and funding to support, the long-term maintenance of SCMs. If SCMs are not inspected and maintained on a regular basis, the stormwater management program is likely to fail. This also negatively impacts the design process—if there is no inspection program oand no accountability for maintenance, the designer has no incentive to build better, more maintenance-friendly SCMs. Finally, without an accurate assessment of the maintenance needs of an SCM, land owners and other responsible parties cannot anticipate their total costs over the lifetime of the device.

Almost all SCMs require active long-term maintenance in order to continue to provide volume and water quality benefits (Hoyt and Brown, 2005; Hunt and Lord, 2006b). Furthermore, a typical municipality may contain hundreds or thousands of individual SCMs within its jurisdiction. Thus, the long-term obligations for maintenance are considerable. For example, the annual maintenance cost of 100 medium-sized wet ponds (one-half acre to 2 acres) is estimated to be a quarter of a million dollars (Hunt and Lord, 2006c). Currently, the majority of municipal stormwater programs do not have adequate plans or resources in place for the long-term maintenance of SCMs (GAO, 2007).

A number of issues confront the long-term maintenance of SCMs. First, legal and financial responsibility for maintenance must be assigned. Historically stormwater ownership and responsibility have been poorly defined and implemented (Reese and Presler, 2005). If a party is an industrial facility that is required to obtain a permit, then responsibility for maintaining SCMs rests with the permittee. Other instances are more ambiguous. For residential developments, the responsibility for long-term maintenance could be assigned to the developer (e.g., establishing long-term financial accounts for maintenance), individual landowners, homeowners associations, or the municipality itself. Some cities, like Austin and Seattle, assume responsibility for long-term maintenance of SCMs in residential areas. Concerns over assigning responsibility to individual residential landowners or homeowners associations include insufficient technical and financial resources to conduct consistent maintenance and a
lack of inspection to require maintenance. A recent survey of municipal stormwater programs found that less than one-third perform regular maintenance on stormwater detention ponds or water quality SCMs in general residential areas (Reese and Presler, 2005). To ensure that adequate maintenance will occur, municipalities can require performance securities (performance bonds, escrow accounts, letter of credit, etc.) that ensure adequate funds are available for maintenance and repair in the event of failure to maintain the SCM by the responsible party.

An effective maintenance program also requires a system to inventory and track SCMs, inspection/monitoring, and enforcement against noncompliance. The large number of SCMs to track and manage creates management challenges. Municipal stormwater programs must administer their regulatory programs, perform inspection and enforcement activities, and maintain SCMs in public lands/rights-of-way and sometimes in residential areas. Municipal programs often do not have adequate staff to ensure that these maintenance responsibilities are adequately carried out. The lack of adequate staff for inspection and an inadequate system for prioritizing inspections have been repeatedly pointed out (Duke and Beswick, 1997; Duke, 2007; GAO, 2007).

Tracking and monitoring costs may also create disincentives for municipalities to adopt or encourage smaller-scale SCMs. For example, residential-scale rain gardens, porous driveways, rain barrels, and grass swales all have the potential to increase the cost and complexity of compliance monitoring because of the multitude of small infiltration devices that are located on private property as opposed to having fewer SCMs located in public rights-of-way or public lands. Small-scale distributed SCMs located on private property raise concerns of municipal willingness to inspect and enforce against noncompliance. Indeed, some municipalities have banned innovative SCMs like pervious pavement because the municipalities have no means to ensure their maintenance and continued operation.

Finally, there is concern that there is inadequate funding to maintain the growing number of SCMs on the landscape. The long-term funding obligation for maintenance has been difficult to assess (GAO, 2007), partly because many stormwater programs frequently do not have adequate accounting practices to define capital value and depreciation, maintenance, operation, or management programs (Reese and Presler, 2005). The problem is compounded because the long-term maintenance cost associated with various types of SCMs is not well understood. Additional research and information are needed on the costs of maintaining the performance of SCMs as experienced in the field (rather than ex ante estimates based on design plans). Research into long-term maintenance costs should include not only routine operation and maintenance costs but also costs for inspection and enforcement and remediation costs associated with SCM performance failures. Such research is critical to understanding the long-term cost obligation that is being assumed by municipal stormwater programs that are responsible for managing a growing number of SCMs.

At the present time, the maintenance schedule for many of the proprietary and nonproprietary SCMs is poorly defined. It will vary with the type of drainage area and the activities that are occurring within it and with the efficiency of the SCM. (For example, the city of Austin, Texas, has determined that the average lifespan of their sand filters ranges from 5 to 15 years, but can be as little as one year if there is construction in the drainage area.) In order to establish a maintenance schedule, an assessment protocol needs to be adopted by municipalities. The protocol, which is specific to the type of SCM, could consist of the following: each year municipalities would be required to collect data from a subset of their SCMs on public and private property, and then over a period of years these data could be used to determine maintenance schedules, predict performance based on age and sediment loading, and identify failed systems. A measurement of the depth of deposited sediment might be the only test needed for settling devices, such as hydrodynamic devices and wet detention ponds. Two levels of analysis could be performed for infiltration devices—one based on simple visual observations and the other using an instrument to check infiltration rates. These assessment methods for infiltration devices have been tested at the University of Minnesota (Gulliver and Anderson, 2007). Without an assessment protocol for SCMs, the chances for poor maintenance and outright failure are greatly increased, it is difficult if not impossible to determine the actual performance of an SCM, and there will be insufficient data to reduce the uncertainty in future SCM design.

Lack of Design Guidance on Important SCMs and Lack of Training

Progress in implementing SCMs is often handicapped by the lack of local or national design guidance on important SCMs, and by the lack of training among the many players in the land development community (planners, designers, plan reviewers, public works staff, regulators, and contractors) on how to properly implement them on the ground. For example, design guidance is lacking or just emerging for many of the non-traditional SCMs, such as conservation of natural areas, earthwork minimization, product substitution, reforestation, soil restoration, impervious cover reduction, municipal housekeeping, stormwater education, and residential stewardship. Some LID techniques are better covered, such as the standards for pervious concrete from the American Concrete Institute and the National Ready Mixed Concrete Association. Design guidance for traditional SCMs such as erosion and sediment control may exist but is often incomplete, outdated, or lacking key implementation details to ensure proper on-the-ground implementation. In other cases, design guidance is available, but has not been disseminated to the full population of Phase II MS4 communities. For example, in an unpublished survey of state manuals used to develop national post-construction stormwater guidance, Hirschman and Kosco (2008) found that less than 25 percent provided sizing criteria, detailed engineering design specifications, or maintenance criteria. Nationwide guidance on SCM design and implementation may not be advisable or applicable to all physiographic, climatic, and ecoregions of the country. Rather, EPA and the states should encourage the development of regional design guidance that can be readily adapted and adopted by municipal and industrial permittees. Improvement of SCM design guidance should incorporate more direct consideration of the parameters of concern, how they move across the landscape, and the issues in receiving waters—a strategy both espoused in this report (page 351) and in recent publications on this topic (Strecker et al., 2005, 2007).

The second key issue relates to how to train and possibly certify the hundreds of thousands of individuals that are responsible for land development and stormwater infrastructure at the local and state level. New stormwater methods and practices cannot be effectively implemented until local planners, engineers, and landscape architects fully understand them and are confident on how to apply them to real-world sites. Currently, stormwater design is not a major component of the already crowded curriculum of undergraduate or graduate planning engineering or landscape architecture programs. Most stormwater professionals acquire their skills on the job. Given the rapid development of new stormwater technologies, there is a critical need for implementation of regional or statewide training programs to ensure that stormwater

professionals are equipped with the latest knowledge and skills. The training programs should ultimately lead to formal certification for stormwater designers, inspectors, and plan reviewers.

Different Standards in Different Jurisdictions That Are Within the Same Watershed

Governmental and watershed boundaries rarely coincide, with the result that most watersheds are made up of many municipal bodies regulating stormwater management. Unfortunately in most cases there is no overarching stormwater regulatory structure that is based upon a watershed analysis. This can result in many unfortunate conflicts, where approval of a stormwater facility does not affect the community issuing the permit. It is often said that the most effective stormwater management for an area high in the watershed is to speed the water downstream, thus saving the upstream community but severely damaging the downstream rivers. While this may be an exaggeration, the problems downstream are less of a concern to the upper watershed communities, and downstream communities may not be able to solve their water issues without help from the upstream communities.

Often neighboring communities' plans or the methods or data used do not coincide. For example, often out-of-date rainfall distributions, methods, or standards are required in the code that do not apply to the newer focus on smaller storms and volume reduction. If methods that include Modified Rational or TR-55 are used, it is difficult if not impossible to show the benefits in peak flow reduction gained through volume reduction devices. Also, some municipalities may require curb and piping and not allow swales, impending the implementation of a cost-effective design. Finally, it is difficult to observe a measureable impact of SCMs when they are guided by a patchwork of regulations. One community may require removal of the first inch of runoff, and another may require the reduction of the 25-year, post-construction peak to the 10-year preconstruction level.

Water Rights that Conflict with Stormwater Management

In the West, water is considered real property, governed by state law and regional water compacts. Landowners in urban areas rarely own surface water rights and are typically prohibited from "beneficial use" of that water, which affects how SCMs are chosen. For example, current practices in Colorado typically allow stormwater to be infiltrated within a short period of time on-site without violation of water laws. However, storage of and/or pumping this water for broader distribution is considered to be a beneficial use and is therefore prohibited. Moreover, as discussed in Chapter 2, SCMs that manage stormwater by driving the water underground with a bored, drilled, or driven shaft or a hole dug deeper than its widest surface dimension are typically considered to be "injection wells," requiring a federal permit and regular monitoring under the Safe Drinking Water Act.

Some states prohibit infiltration because of concerns over long-term groundwater pollution. In California, which does not have a uniform policy for groundwater management and groundwater rights, authority over groundwater quality management falls to several regional and local agencies. For example, the Upper Los Angeles River Area (ULARA) has a court-appointed Watermaster to manage the complex appropriation of its groundwater to user cities and agencies. The ULARA has clashed with the City of Los Angeles regarding rights to all of

the water that normally recharges the Los Angeles River via runoff from precipitation. In 2000, the ULARA Watermaster expressed a concern with certain permit provisions of the Los Angeles County MS4 Permit for New Development/ Redevelopment that promoted infiltration, stating that the MS4 permit interfered with the adjudicated right of the City of Los Angeles to manage groundwater.

Urban Development and Sprawl

The continued expansion of urban areas is inevitable given population increases worldwide and the transition from agricultural to industrial economies. Given that urbanization of almost any magnitude—even less than 10 percent impervious area—has been demonstrated to have an impact on in-stream water quality, a central question to be addressed is how water quality can be maintained as cities grow, without having negative impacts on social and economic systems. Ideally, SCMs would perform their water quality function, contribute to the livability of cities, and enhance their economic and social potentials.

Low-density, auto-oriented urban development, commonly known as sprawl, has been the predominant pattern of development in the United States, and increasingly worldwide, since World War II. It has been widely criticized for its inefficient use of land, its high use of natural resources, and its high energy costs—all of which are associated with the required auto-oriented travel. Additionally, ongoing economic costs related to the provision of widely dispersed services and social impacts of a breakdown in community life have been identified (Brugemann, 1974). Sprawl and the impacts on in-stream water quality that result from urbanization have been an inevitable consequence of improved economic conditions. In the United States, sprawl constitutes the vast majority of development occurring today because a majority of the population is attracted to the benefits of a suburban lifestyle, government has subsidized roads and highways at the expense of public transit, and local zoning often limits development density.

There has been a great deal of innovation in city planning and design in the past decade that encourages greater density and a return to urban living. New types of zoning, New Urbanism, Smart Growth, and related innovations in urban planning and design have been developed in parallel with environmental regulations at local to national levels (see Chapter 2). They acknowledge the importance of protecting natural resources to maintain quality of life and have established water quality as an important consideration in city building.

It is not clear that current stormwater regulations can be effectively implemented over the broad range of development patterns that characterize contemporary cities or if they inadvertently favor one type of development over another. For example, on-site SMCs are often recommended as the preferred means of stormwater management, although they tend to encourage lower-density development patterns. And while they are easily implemented and regulated given the incremental, site-by-site development that is typical of most urban growth, monitoring and maintenance can be expensive and difficult for both the individual property owner and the regulating authority. In highly urbanized areas, they are often relegated to subsurface systems that are expensive and that, to be effective, require high levels of maintenance.

In newly developing areas, cluster development should be encouraged whenever possible, according to the Smart Growth principles of narrower streets, reduced setbacks, and related approaches to reduce the amount of impervious area required and land consumed. Furthermore,

an interconnected series of on-site and consolidated SCMs can reduce subsurface stormwater piping requirements. Most planned communities have dedicated park and open-space areas that can constitute 25 percent or more of a development's total land area, making it feasible to easily accommodate consolidated SCMs (typically 8 to 10 percent of impervious area) within multi-functional open space and park lands. Cost efficiencies such as a 30 percent reduction in infrastructure costs (Duaney Plater-Zyberk & Company, 2006) can be realized through Smart Growth development techniques. Clustered housing surrounded by open space, laced with trails, has appreciated in value at a higher rate than conventionally designed subdivisions (Crompton, 2007).

In order to encourage infill or redevelopment over sprawl patterns of development, innovative zoning and other practices will be needed to prevent stormwater management from becoming onerous. For example, incentive zoning or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Innovations in governance and finance can also be used to incorporate consolidated SCMs into urban environments. For example, the City of Denver, in updating its Comprehensive Plan, designated certain underdeveloped corridors and districts in the city as "areas of change" where it hoped to encourage large-scale infill redevelopment. Given the scale of redevelopment, it would be feasible to establish special maintenance districts, allowing the development of consolidated SCMs that have multiple functions. To fund land purchase and facility design and construction, cash in lieu of payments could be made.

Safety and Aesthetic Concerns

Vector-borne diseases, especially West Nile virus, are a concern when SCMs such as extended detention basins, constructed wetlands, and rain barrels are proposed. Furthermore, other SCMs that are poorly designed, improperly constructed, or inadequately maintained may retain water and provide an ideal breeding ground for mosquitoes, increasing the potential for disease transmission to humans and wildlife. Kwan et al. (2005) found that water-retaining SCMs increase the availability of breeding habitats for disease vectors and provide opportunistic species an extended breeding season. State Health Departments generally recommend that SCMs be designed to drain fully in 72 hours, which is the minimum time required for a mosquito to complete its life cycle under optimum conditions. In SCMs where there is permanent standing water, such as stormwater wetlands, there is the possibility of introducing biota that might prey on mosquitoes. Municipalities may have to consider the added cost of vector control and public health when implementing stormwater quality management programs.

With larger consolidated and regional extended detention facilities, concerns about the safety of children who may be attracted to such SCMs and ensuing liability must be considered. These SCMs need to be fenced off or otherwise designed appropriately to reduce the risk of drowning.

One aspect of stormwater management that is infrequently considered is the aesthetic appeal, or lack thereof, of SCMs. The visual qualities of SCMs are important because they are a growing part of the urban landscape setting. Although it can be assumed that landscapes that are carefully tended are often preferred over other types of landscapes, it depends substantially on one's point of view. For example, an engineer may consider a particular SCM that is functioning as expected to be beautiful in the sense that its engineering function has been realized, even

though there is sediment buildup, algae, or other products of a properly functioning SCM visible. Similarly, a biologist or ecologist evaluating an ecologically healthy SCM in an urban context might find it to be beautiful because of its biological or ecological diversity, whereas another individual who evaluates the same SCM finds it to be "weedy." SCMs can be viewed as a means of restoring a degraded landscape to a state that might have existed before urban development. The desire to "return to nature" is a seductive idea that suggests naturalistic SCMs that may have very little to do with an original landscape, given the dramatic changes in hydrology that are inevitable with urban streams. Each of these widely varied views of SCMs may be appropriate depending on the context and the viewer.

One goal of stormwater management should be to make SCMs desirable and attractive to a broader audience, thereby increasing their potential for long-term effectiveness. For example, the Portland convention center rain gardens demonstrate how native and non-native wetland plantings can be carefully composed as a landscape composition and also provide for stormwater treatment. If context and aesthetics of a chosen SCM are poorly matched, there is a high probability that the SCM will be eliminated or its function compromised because of modifications that make its landscape qualities more appropriate for its context.

CONCLUSIONS AND RECOMMENDATIONS

SCMs, when designed, constructed, and maintained correctly, have demonstrated the ability to reduce runoff volume and peak flows and to remove pollutants. However, in very few cases has the performance of SCMs been mechanistically linked to the guaranteed sustainment at the watershed level of receiving water quality, in-stream habitat, or stream geomorphology. Many studies demonstrate that degradation in rivers is directly related to impervious surfaces in the contributing watershed, and it is clear that SCMs, particularly combinations of SMCs, can reduce the runoff volume, erosive flows, and pollutant loadings coming from such surfaces. However, none of these measures perfectly mimic natural conditions, such that the accumulation of these SCMs in a watershed may not protect the most sensitive beneficial aquatic life uses in a state. Furthermore, the implementation of SCMs at the watershed scale has been too inconsistent and too recent to observe an actual cause-and-effect relationship between SCMs and receiving waters. The following specific conclusions and recommendations about stormwater control measures are made.

Individual controls on stormwater discharges are inadequate as the sole solution to stormwater in urban watersheds. SCM implementation needs to be designed as a system, integrating structural and nonstructural SCMs and incorporating watershed goals, site characteristics, development land use, construction erosion and sedimentation controls, aesthetics, monitoring, and maintenance. Stormwater cannot be adequately managed on a piecemeal basis due to the complexity of both the hydrologic and pollutant processes and their effect on habitat and stream quality. Past practices of designing detention basins on a site-by-site basis have been ineffective at protecting water quality in receiving waters and only partially effective in meeting flood control requirements.

Nonstructural SCMs such as product substitution, better site design, downspout disconnection, conservation of natural areas, and watershed and land-use planning can dramatically reduce the volume of runoff and pollutant load from a new development.

Such SCMs should be considered first before structural practices. For example, lead concentrations in stormwater have been reduced by at least a factor of 4 after the removal of lead from gasoline. Not creating impervious surfaces or removing a contaminant from the runoff stream simplifies and reduces the reliance on structural SCMs.

SCMs that harvest, infiltrate, and evapotranspirate stormwater are critical to reducing the volume and pollutant loading of small storms. Urban municipal separate stormwater conveyance systems have been designed for flood control to protect life and property from extreme rainfall events, but they have generally failed to address the more frequent rain events (<2.5 cm) that are key to recharge and baseflow in most areas. These small storms may only generate runoff from paved areas and transport the "first flush" of contaminants. SCMs designed to remove this class of storms from surface runoff (runoff-volume-reduction SCMs—rainwater harvesting, vegetated, and subsurface) can also address larger watershed flooding issues.

Performance characteristics are starting to be established for most structural and some nonstructural SCMs, but additional research is needed on the relevant hydrologic and water quality processes within SCMs across different climates and soil conditions. Typical data such as long-term load reduction efficiencies and pollutant effluent concentrations can be found in the International Stormwater BMP Database. However, understanding the processes involved in each SCM is in its infancy, making modeling of these SCMs difficult. Seasonal differences, the time between storms, and other factors all affect pollutant loadings emanating from SCMs. Research is needed that moves away from the use of percent removal and toward better simulation of SCM performance. Hydrologic models of SCMs that incorporate soil physics (moisture, wetting fronts) and groundwater processes are only now becoming available. Research is particularly important for nonstructural SCMs, which in many cases are more effective, have longer life spans, and require less maintenance than structural SCMs. EPA should be a leader in SCM research, both directly by improving its internal modeling efforts and by funding state efforts to monitor and report back on the success of SCMs in the field.

Research is needed to determine the effectiveness of suites of SCMs at the watershed scale. In parallel with learning more about how to quantify the unit processes of both structural and nonstructural practices, research is needed to develop surrogates or guidelines for modeling SCMs in lumped watershed models. Design formulas and criteria for the most commonly used SCMs, such as wet ponds and grass swales, are based on extensive laboratory and/or field testing. There are limited data for other SCMs, such as bioretention and proprietary filters. Whereas it is important to continue to do rigorous evaluations of individual SCMs, there is also a role for more simple methods to gain an approximate idea about how SCMs are performing. The scale factor is a problem for watershed managers and modelers, and there is a need to provide guidance on how to simulate a watershed of SCMs, without modeling thousands of individual sites.

Improved guidance for the design and selection of SMCs is needed to improve their implementation. Progress in implementing SCMs is often handicapped by the lack of design guidance, particularly for many of the non-traditional SCMs. Existing design guidance is often

incomplete, outdated, or lacking key details to ensure proper on-the-ground implementation. In other cases, SCM design guidance has not been disseminated to the full population of MS4 communities. Nationwide guidance on SCM design and implementation may not be advisable or applicable to all physiographic, climatic, and ecoregions of the country. Rather, EPA and the states should encourage the development of regional design guidance that can be readily adapted and adopted by municipal and industrial permittees. As our understanding of the relevant hydrologic, environmental, and biological processes increases, SCM design guidance should be improved to incorporate more direct consideration of the parameters of concern, how they move across the landscape, and the issues in receiving waters.

The retrofitting of urban areas presents both unique opportunities and challenges. Promoting growth in these areas is desirable because it takes pressure off the suburban fringes, thereby preventing sprawl, and it minimizes the creation of new impervious surfaces. However, it is more expensive than Greenfields development because of the existence of infrastructure and the limited availability of land. Both innovative zoning and development incentives, along with the selection of SCMs that work well in the urban setting, are needed to achieve fair and effective stormwater management in these areas. For example, incentive or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Publicly owned, consolidated SCMs should be strongly considered as there may be insufficient land to have small, on-site systems. The performance and maintenance of the former can be overseen more effectively by a local government entity. The types of SCMs that are used in consolidated facilities—particularly detention basins, wet/dry ponds, and stormwater wetlands—perform multiple functions, such as prevention of streambank erosion, flood control, and large-scale habitat provision.

REFERENCES

- Alexander, D., and J. Heaney. 2002. Comparison of Conventional and Low Impact Development Drainage Designs. Final Report to the Sustainable Futures Society. University of Colorado, Boulder.
- Andrews, E. D. 1984. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Geological Society of America Bulletin 95:371-378.
- Arendt, R. 1996. Conservation Design for Subdivisions. Covelo, CA: Island Press.
- ASCE (American Society of Civil Engineers). 2007. 2007 Data Analysis Report. International Stormwater BMP Database. U.S. Environmental Protection Agency, Water Environment Research Foundation. www.bmpdatabase.orgr.
- Athayde, D. N., P. E. Shelly, E. D. Driscoll, D. Gaboury, and G. Boyd. 1983. Results of the Nationwide Urban Runoff Program—Vol. 1, Final Report, EPA WH-554. Washington, DC: EPA.
- Aultman, S. 2007. Analyzing Cost Implications of Water Quality Trading Provisions: Lessons from the Virginia Nutrient Credit Exchange Act. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg.
- Balusek. 2003. Quantifying Decreases in Stormwater Runoff from Deep-Tilling, Chisel-Planting and Compost Amendments. Dane County Land Conservation Department. Madison, WI.
- Bannerman, R., J. Konrad, D. Becker, G. V. Simsiman, G. Chesters, J. Goodrich-Mahoney, and B. Abrams. 1979. The IJC Menomonee River Watershed Study—Surface Water Monitoring Data, EPA-905/4-79-029. U.S. Environmental Protection Agency, Chicago.

The pollutant parameters that are of concern in stormwater discharges from construction activity are TSS, settleable solids, turbidity, and nutrients from erosion; pH from concrete and stucco; and a wide range of metallic and organic pollutants from construction materials, processes, wastes, and vehicles and other motorized equipment. The permitting authority, in addition to guidelines for the water quality design storm, must establish SCM performance criteria for stormwater discharges associated with construction activity. The construction site operator should be given the option of implementing SCMs that are the presumptive technology, or equivalent SCMs that can achieve the performance criteria. For example, the recommended SCMs in Box 5-3 could serve as the presumptive construction SCMs on a typical construction site that is less than 50 acres in size. If the operator elects to go with a suite of alternative SCMs, then adequate monitoring must be performed to demonstrate that the alternative SCMs are in fact achieving the performance criteria. In addition, the CGP presently does not mandate or require that post-construction SCMs be integrated with the MS4 permittee requirements under its New Development/Redevelopment Program requirements. The proper planning for and implementation of SCMs that will help mitigate stormwater pollution from planned future use of the site will be critical to protecting water quality. Thus the post-construction requirements of the CGP should be strengthened and better integrated with the new development/redevelopment requirements of the MS4 permits.

Municipal Program

Several key enhancements to the MS4 permitting program are needed to ensure that resources are targeted to achieve the greatest on-the-ground implementation of SCMs to make incremental progress in meeting water quality standards. Six specific issues are discussed below; their implementation will require greater collaboration and flexibility among regulators and permitted parties. These recommendations are suggested for communities that are not ready for the integrated watershed approach proposed in the prior section, and represent a bridge toward building internal capacity to implement them.

Numeric Expression of "Maximum Extent Practicable"

The ambiguity of the term "maximum extent practicable" (MEP) has been a major impediment to achieving meaningful water quality results in the MS4 program. The EPA should develop numerical expressions of MEP in the next round of permit renewals that can be measured and tracked. A national numeric benchmark should be avoided; states should focus on regional benchmarks that are tied to their water quality problems. Four examples of methods to define MEP in a numeric manner are provided below: the first three are applied at a regional or state level, whereas the last (impervious cover-based TMDLs) offers more flexibility to be applied at individual sites.

Establish Municipal Action Levels. This approach relies on the use of a national database of stormwater runoff quality to establish reasonable expectations for outfall monitoring in highly developed watersheds. The NSQD (Pitt et al., 2004) allows users to statistically establish action levels based on regional or national event mean concentrations developed for

pollutants of concern. The action level would be set to define unacceptable levels of stormwater quality (e.g., two standard deviations from the median statistic, for simplicity). Municipalities would then routinely monitor runoff quality from major outfalls. Where an MS4 outfall to surface waters consistently exceeds the action level, municipalities would need to demonstrate that they have been implementing the stormwater program measures to reduce the discharge of pollutants to the maximum extent practicable. The MS4 permittees can demonstrate the rigor of their efforts by documenting the level of implementation through measures of program effectiveness, failure of which will lead to an inference of noncompliance and potential enforcement by the permitting authority.

Site-Based Runoff and/or Pollutant Load Limits. This approach is primarily used for watersheds that are experiencing rapid development; it establishes numeric targets or performance standards for pollutant or runoff reduction that must be met on individual development sites. The numeric targets may involve specific pollutant load limits or runoff reduction volumes. For example, Virginia DCR (2007) and Hirschman et al. (2008) established a statewide computational method to ensure that SCMs are sized, designed, and sequenced to comply with specific nutrient-based load and runoff reduction limits. The nutrient load limits of 0.28 lb/acre/yr for total phosphorus and 2.68 lb/acre/yr for total nitrogen were computed using the Chesapeake Bay Model for Virginia tributaries to the bay. The design process also requires the computation of runoff reduction volumes achieved to promote the use of nonstructural SCMs. The basic concept is that new development on non-urban land must not exceed the average annual nutrient load and runoff and load limit approach has been advocated by the Office of Inspector General (2007) and Schueler (2008a) and is under active consideration by several other Chesapeake Bay states.

Wenger et al. (2008) reports on a no-net-hydrologic-increase strategy to protect endangered fish species in the northern Georgia Piedmont that sets specific on-site runoff reduction requirements for a range of land uses and design storm events. A similar approach has been incorporated into the recently enacted Energy Independence and Security Act of 2007 that contains provisions that require that the "sponsor of any development or redevelopment project involving a Federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow."

The challenge of defining MEP as a runoff reduction or pollutant load limit is that considerable scientific and engineering analysis is needed to establish the performance standards, evaluate SCM capability to meet them, and devise a workable computational approach that links them together at both the site and watershed levels. In addition, care must be taken to define an appropriate baseline to represent predevelopment conditions that does not unduly penalize redevelopment projects or make it impossible to comply with limits at new development sites after maximum effort to apply multiple SCMs is made.

Turbidity Limits for Construction Sites. Numeric enforcement criteria can be used to define what constitutes an egregious water quality violation at construction sites and provide a technical criterion to measure the effectiveness of erosion and sediment control practices.

Currently, most states and localities do not specify either numeric enforcement criteria or a monitoring requirement within their CGP (see the survey data contained in Appendix C).

A maximum turbidity limit would establish definitive criteria as to what constitutes a direct sediment control violation and trigger an assessment for remediation and prevention actions. For example, local erosion and sediment control ordinances could establish a numeric turbidity limit of 75 Nephelometric Turbidity Units (NTU) as an instantaneous maximum for rainfall events less than an inch (or a 25 NTU monthly average) and would prohibit visible sediment in water discharged from upland construction sites. While the exact turbidity limit would need to be derived on a regional basis to reflect geology, soils, and receiving water sensitivity, research conducted in the Puget Sound of Washington indicates that turbidity limits in the 25 to 75 NTU can be consistently achieved at most highway construction sites using current erosion and sediment control technology that is properly maintained (Horner et al., 1990). If turbidity limits are exceeded, a detailed assessment of site conditions and follow-up remediation actions would be required. If turbidity limits continue to be exceeded, penalties and enforcement actions would be imposed. Enforcement of turbidity limits could be performed either by state, local, or third party erosion and sediment control inspectors, or—under appropriate protocols, training, and documentation—by citizens or watershed groups.

Impervious Cover Limits and IC-based TMDLs. MS4s that discharge into TMDL watersheds also require more quantitative expression of how MEP will be defined to reduce pollutant loads to meet water quality standards. Maine, Vermont, and Connecticut have recently issued TMDLs that are based on impervious cover rather than individual pollutants of concern (Bellucci, 2007). In such a TMDL, impervious cover is used as a surrogate for increased runoff and pollutant loads as a way to simplify the urban TMDL implementation process. Impervious cover-based TMDLs have been issued for small subwatersheds that have biological stream impairments associated with stormwater runoff but no specific pollutant listed as causing the impairment (in most cases, these subwatersheds are classified as impacted according to the Impervious Cover Model [ICM]—see Box 3-10). A specific subwatershed threshold is set for effective impervious cover, greater stormwater treatment for new development, offsets through stormwater retrofits, or other means.

Traditional pollutant-based TMDLs would continue to be appropriate for "nonsupporting" and "urban drainage" subwatersheds, although they could be modified to focus compliance monitoring on priority urban source areas or subwatersheds that produce the greatest pollutant loads. Although EPA (2002) indicates that this analysis does not extend to demonstrating that changes will occur in receiving waters, it does outline a rigorous process for evaluating pollutant discharges and SCM performance. More recent EPA guidance (2007c) recommends that MS4s conduct a four-step analysis, which is distilled to its essence below:

Step 1: Estimate loads for pollutant of concern for the watershed.

- Step 2: Provide a specific list of SCMs that will be applied in the listed watershed.
- Step 3: Estimate the pollutant removal capability of the individual SCMs applied.
- Step 4: Compute aggregate watershed pollutant reduction achieved by the MS4.

Although this is not a particularly new interpretation of addressing stormwater loads in watersheds listed as impaired and/or having written TMDLs, it is exceptionally uncommon for

individual MS4s to document the link between their stormwater discharges and water quality standard exceedances, as modified by the system of SCMs that they used to reduce these pollutants. As of 2007, EPA could only document 17 TMDLs that addressed stormwater discharges using this sequential analysis. EPA and states need to provide more specific guidance for MS4s to comply with TMDLs in their permit applications and annual reports.

Focus MS4 Permit Implementation at the Subwatershed Level

Chapter 5 noted the importance of the watershed context for making better local stormwater decisions. This context can be formally incorporated into local MS4 permits by focusing implementation on a subwatershed basis, using the ICM, as described in Box 3-10 and outlined in Table 6-1. When urban streams are classified by the ICM, this basic subwatershed planning process can be used to establish realistic water quality and biodiversity goals for individual classes of subwatersheds, as shown in Table 6-2. As can be seen, goals for water and habitat quality become less stringent as impervious cover increases within the subwatershed. This subwatershed approach provides stormwater managers with more specific, measurable, and attainable implementation strategies than the one-size-fits-all approach that is still enshrined in current wet-weather management regulations.

TABLE 6-1 Components of Subwatershed-Based Stormwater Management

- 1. Define interim water quality and stormwater goals (i.e., pollutants of concern, biodiversity targets) and the primary stormwater source areas and hotspots that cause them.
- 2. Delineate subwatersheds within community boundaries.
- 3. Measure current and future impervious cover within individual subwatersheds.
- 4. Establish the initial subwatershed management classification using the ICM.
- 5. Undertake field monitoring to confirm or modify individual subwatershed classifications.
- 6. Develop specific stormwater strategies within each subwatershed classification that will guide or shape how individual practices and SCMs are generally assembled at each individual site.
- 7. Undertakes restoration investigations to verify restoration potential in priority subwatersheds.
- 8. Agree on the specific implementation measures that will be completed within the permit cycle. Evaluate the extent to which each of the six minimum management practices can be applied in each subwatershed to meet municipal objectives.
- 9. Agree on the maintenance model that will be used to operate or maintain the stormwater infrastructure, assign legal and financial responsibilities to the owners of each element of the system, and develop a tracking and enforcement system to ensure compliance.
- 10. Define the trading or offset system that will be used to achieve objectives elsewhere in the local watershed objectives in the event that full compliance cannot be achieved due to physical constraints (e.g., indexed fee-in-lieu to finance municipal retrofits).
- 11. Establish sentinel monitoring stations in subwatersheds to measure progress towards goals.
- 12. Revise subwatershed management plans in the subsequent NPDES permitting cycle based on monitoring data.

TABLE 6-2 Expectat	tions for Different Urban Subwatershed Classes					
Lightly Impacted Subwatersheds (1 to 5% IC)	• Consistently attain scores for specific indicators for hydrology, biodiversity, and geomorphology that are comparable to streams whose entire subwatersheds are fully protected in a natural state (e.g., national parks). Should provide for healthy reproduction of trout, salmon, or other keystone fish species.					
Moderately Impacted Subwatersheds (6 to 10% IC)	• Consistently attain scores for specific stream indicators that are comparable to the highest 10 percent of streams in a population of rural watersheds in order to maintain or restore ecological structure, function, and diversity of the streams. The "good to excellent" indicator scores for this category of subwatersheds will be the benchmark against which the relative quality of more developed subwatersheds will be measured.					
Heavily Impacted Subwatersheds (11 to 25% IC)	 Consistently attain good stream quality indicator scores to ensure enough stream function to adequately protect downstream receiving waters from degradation. Function is defined in terms of flood storage, in-stream nutrient processing, biological corridors, stable stream channels, and other factors. 					
Non-Supporting Subwatersheds (26 to 60% IC)	 Consistently attain "fair to good" stream quality indicator scores. Meet bacteria standards during dry weather and trash limits during wet weather. Maintain existing stream corridor to allow for safe passage of fish and floodwaters. 					
Urban Drainage Subwatersheds (61 to 100% IC)	 Maintain "good" water quality conditions in downstream receiving waters. Consistently attain "fair" water quality scores during wet weather and "good" water scores during dry weather. Provide clean "plumbing" in upland land uses such that discharges of sewage and toxics do not occur. 					

TABLE 6-2 Expectations for Different Urban Subwatershed Classes

Note: the objectives presume some portion of the subwatershed has already been developed, thereby limiting attainment of objectives. If a subwatershed is not yet developed, managers should shift expectations up one category (e.g., urban drainage should behave like non-supporting). Also, the specific ranges of IC that define each management category should always be derived from local or regional monitoring data. Note that the ranges in IC shown to define a subwatershed management category are illustrative and will vary regionally.

Some examples of how to customize stormwater strategies for different subwatersheds are described in Table 6-3. This approach enables MS4s to utilize the full range of watershed planning, engineering, economic, and regulatory tools that can manage the intensity, location, and impact of impervious cover on receiving waters. In addition, the application of multiple tools in a given subwatershed class helps provide the maximum level of protection or restoration for an individual subwatershed when impervious cover is forecast to increase due to future growth and development. The conceptual management approach shown in Table 6-3 is meant to show how urban stream classification can be used to guide stormwater decisions on a subwatershed basis. The first column of the table lists some key stormwater management issues that lend themselves to a subwatershed approach and are explained in greater detail below.

	Lightly	Moderately		Non-	
Stormwater Management Issue	Impacted Subwatershed (1 to 5% IC)	Impacted Subwatershed (6 to 10% IC)	Impacted (IC 11 to 25%)	Supporting (IC 26 to 60%)	Urban Drainage (61% + IC)
Linkage with Local Land- Use Planning and Zoning	Utilize extensive land conservation and acquisition to preserve natural land cover	Implement site- based or watershed-based IC caps and maximize conservation of natural areas	Reduce the IC created for each zoning category by changing local codes and ordinances	Encourage redevelopment, development intensification and mass transit to decrease per-capita IC utilization in the urban landscape. Develop watershed restoration plans to maintain or enhance existing aquatic resources.	
Site-based Stormwater Reduction and Treatment Limits	Allow no net increase in runoff volume, velocity and duration up to the five-year design storm	Treat runoff from two-year design storm, using SCMs to achieve 100% runoff reduction		Treat runoff from the one-year design storm, using SCMs to achieve at least 75% runoff reduction	
Site-Based IC Fees	None	Establish Excess IC fee for projects that exceed IC for zoning category		Allow IC mitigation fee	
Subwatershed Trading	Receiving Area for Conservation EasementsReceiving Area fo Projects and/or Re			Receiving or Sending Area for Retrofit	Sending Area for Restoration Projects
Stormwater Monitoring Approach	Measure in-stream metrics of biotic integrity		Track subwatershed IC and measure SCM performance	Check outfalls and measure SCM performance	Check stormwater quality against municipal actions levels at outfalls
TMDL Approach	Protect using antidegradation provisions of the CWA	Use IC-based TMDLs that use flow or IC as a surrogate for traditional pollutants		Use pollutant TMDLs to identify problem subwatersheds	Use pollutant TMDLs to identify priority source areas
Dry Weather Water Quality	Perform in- stream grab sampling of water quality at sentinel stations	Check for failing septic systems	Screen outfalls for illicit discharges	Perform dry weather sampling in streams and outfall screening	Perform dry weather sampling in receiving waters
Addressing Existing Development	Protect or conserve natural areas, enhance riparian cover, assess road crossings, and ensure farm, forest, and pasture best practices are used		Perform stream repairs, riparian reforestation, and residential stewardship	Perform storage retrofits and stream repairs	Use pollution source controls and municipal housekeeping

TABLE 6-3 Examples of Customizing Stormwater Strategies on a Subwatershed Basis

Linkage with Local Land-Use Planning and Zoning. Given the critical relation between land use and the generation of stormwater, communities should ensure that their planning tools (e.g., comprehensive plans, zoning, and watershed planning) are appropriately aligned with the intended management classification for each subwatershed. For example, it is reasonable to encourage redevelopment, infill, and other forms of development intensification within non-supporting or urban drainage subwatersheds, whereas down-zoning, site-based IC caps, and other density-limiting planning measures are best applied to sensitive subwatersheds.

Stormwater Treatment and Runoff Reduction MEP. Subwatershed classification allows managers to define achievable numerical benchmarks to define treatment in terms of the maximum extent practicable. Thus, a greater level of treatment is required for less-developed subwatersheds and a reduced level of treatment is applied for more intensely developed subwatersheds. This is most frequently expressed in terms of a rainfall depth associated with a given design storm. Designers are required to treat and/or reduce runoff for all storm events up to the designated storm event. This flexibility recognizes the greater difficulty and cost involved in providing the same level of treatment in an intensely developed subwatershed, as well as the fact that less treatment is needed to maintain stream condition in a highly urban subwatershed.

The other key element of defining MEP is to specify how much of the treatment volume must be achieved through runoff reduction. The runoff reduction volume has emerged as the primary performance benchmark to maintain predevelopment runoff conditions at a site after it is developed. In its simplest terms, this means achieving the same predevelopment runoff coefficient for each storm up to a defined storm event through a combination of canopy interception, soil infiltration, evaporation, rainfall harvesting, engineered infiltration, extended filtration, or evapotranspiration (Schueler, 2008b). Once again, the physical feasibility and need to provide treatment through runoff reduction becomes progressively harder as subwatershed impervious cover increases.

Site-Based IC Fees. Several economic strategies can be used to promote equity and efficiency when it comes to managing stormwater in different kinds of subwatersheds. In lowerdensity subwatersheds, an excess impervious cover fee can be charged to individual sites that exceed a maximum threshold for impervious cover for their zoning category. Similarly, an impervious cover mitigation fee can be levied at individual development sites in more intensely developed subwatersheds when on-site compliance is not possible or it is more cost-effective to provide an equivalent amount of treatment elsewhere in the watershed. The type of fee and the frequency that is used is expected to be closely related to the subwatershed classification.

Subwatershed Trading. The degree of impervious cover in a subwatershed also has a strong influence on the feasibility, cost, and appropriateness of restoration projects. Consequently, any revenues collected from various site IC fees can be traded among subwatersheds to arrive at the least-cost, effective solutions. In general, the most intensely developed subwatersheds are sending areas and the more lightly developed subwatersheds are used as receiving areas for such projects.

Stormwater Monitoring Approach. Subwatershed classification can also be used to define the type and objectives for stormwater monitoring to track compliance over time. For example, in sensitive subwatersheds, it may be advisable to routinely measure in-stream metrics

of biological integrity to ensure stream quality is being maintained or enhanced. As impervious cover increases, stormwater managers may want to shift toward tracking of subwatershed impervious cover and actual performance monitoring of select SCMs to establish their effectiveness (e.g., impacted subwatersheds). At even higher levels of impervious cover, streams are transformed into urban drainage, and monitoring becomes more focused on identifying individual stormwater outfalls with the worst quality during storm conditions.

TMDL Approach. Subwatershed classification may also serve as a useful tool to decide how to apply TMDLs to impaired waters, or how to ensure that healthy waters are not degraded by future land development. For example, most lightly developed subwatersheds will seldom be subject to a TMDL, or if so, urban stormwater is often only a minor component in the final waste load allocation. Antidegradation provisions of the CWA are often the best means to protect the quality of these healthy waters before they are degraded by future land development. By contrast, impaired watersheds appear to be the best candidates to apply impervious cover-based TMDLs, as described earlier in this section. As subwatershed impervious cover increases, more traditional pollutant-based TMDLs are warranted, with a focus on problem subwatersheds for non-supporting streams and priority source areas for urban drainage.

Dry Weather Water Quality. The type, severity, and sources of illicit discharges often differ among different subwatershed classifications, which can have a strong influence on the kind of dry weather detective work needed to isolate them. For example, in lightly developed subwatersheds, failing septic systems are often the most illicit discharges, which prompts assessments at the lot or ditch level. The storm-drain network and potential discharge source areas becomes progressively more complex as subwatershed impervious cover increases. Consequently, illicit-discharge assessments shift toward outfall screening, catchment analysis, and individual source analysis.

Addressing Existing Development. The need for, type of, and feasibility for restoration efforts shift as subwatershed impervious cover increases. In general, lightly developed watersheds have the greatest land area available for retrofits and restoration projects in the stream corridor. Consequently, unique restoration strategies are developed for different subwatershed classifications (Schueler, 2004).

Require More Quantitative Evaluation of MS4 Programs

The next round of permit renewals should contain explicit conditions to define and measure outcomes from the six minimum management measures that constitute a Phase II MS4 program. Measurable program evaluation is critical to develop, implement, and adapt effective local stormwater programs, and has been consistently requested in permits and application guidance. To date, however, only a small fraction of MS4 communities have provided measurable outcomes with regard to aggregate pollutant reduction achieved by their municipal stormwater programs.

CASQA (2007) defines a six-level pyramid to assess program effectiveness, beginning with documenting activities, raising awareness, changing behaviors, reducing loads from

sources, improving runoff quality, and ultimately leading to protection of receiving water quality (see Figure 6-1).

At the current time, most MS4s are struggling simply to organize or document their program activities (i.e., the first level), and few have moved up the pyramid to provide a quantitative link between program activities and water quality improvements. The framework and methods to evaluate program effectiveness for each of the six minimum management measures has been outlined by CASQA (2007). Regulators are encouraged to work with permitted municipalities to define increasingly more specific quantitative measures of program performance in each succeeding permit cycle.

Shift Monitoring Requirements to Measure the Performance of Stormwater Control Measures

The lack of monitoring requirements in the Phase II stormwater program makes it virtually impossible to measure or track actual pollutant load or runoff volume reductions achieved. While the existing Phase I outfall monitoring requirements have improved our understanding of urban stormwater runoff quality, they are also insufficient to link program effort to receiving water quality. It is recommended that both Phase I and II MS4s shift to a more collaborative monitoring effort to link management efforts to receiving water quality, as described below:

• If a review of past Phase 1 MS4s stormwater outfall monitoring indicates no violations of the Municipal Action Limits, then their current outfall monitoring efforts can be replaced by pooled annual financial contributions to a regional stormwater monitoring

collaborative or authority to conduct basic research on the performance and longevity of range of SCMs employed in the community.

- If some subwatersheds exceed Municipal Action Levels, outfall monitoring should be continued at these locations, as well as additional source area sampling in the problem subwatershed to define the sources of the stormwater pollutant of concern.
- Phase II MS4s should be encouraged to make incremental financial contributions to a state or regional stormwater monitoring research collaborative to conduct basic research on SCM performance and longevity. Although the committee knows of no examples where this has been accomplished, this pooling of financial resources by multiple MS4s should produce more useful scientific data to support municipal programs than could be produced by individual MS4s alone. Phase II communities that do not participate in the research collaborative would be required to perform their own outfall and/or SCM performance monitoring, at the discretion of the state or federal permitting authority.
- All MS4s should be required to indicate in their annual reports and permit renewal applications how they incorporated research findings into their existing stormwater programs, ordinances, and design manuals.

CONCLUSIONS AND RECOMMENDATIONS

The watershed-based permitting program outlined in the first part of this chapter is ultimately essential if the nation is to be successful in arresting aquatic resource depletion stemming from sources dispersed across the landscape. Smaller-scale changes to the EPA stormwater program are also possible. These include integration of industrial and construction permittees into municipal permits ("integration"), as well as a number of individual changes to the current industrial, construction, and municipal programs.

Improvements to the stormwater permitting program can be made in a tiered manner. Thus, individual recommendations specific to advancing one part of the municipal, industrial, or construction stormwater programs could be implemented immediately and with limited additional funds. "Integration" will need additional funding to provide incentives and to establish partnerships between municipal permittees and their associated industries. Finally, the watershed-based permitting approach will likely take up to ten years to implement. The following conclusions and recommendations about these options are made:

The greatest improvement to the EPA's Stormwater Program would be to convert the current piecemeal system into a watershed-based permitting system. The proposed system would encompass coordinated regulation and management of all discharges (wastewater, stormwater, and other diffuse sources), existing and anticipated from future growth, having the potential to modify the hydrology and water quality of the watershed's receiving waters.

The committee proposes centralizing responsibility and authority for implementation of watershed-based permits with a municipal lead permittee working in partnership with other municipalities in the watershed as co-permittees, with enhanced authority and funding commensurate with increased responsibility. Permitting authorities would adopt a minimum

goal in every watershed to avoid any further loss or degradation of designated beneficial uses in the watershed's component waterbodies and additional goals in some cases aimed at recovering lost beneficial uses. The framework envisions the permitting authorities and municipal copermittees working cooperatively to define careful, complete, and clear specific objectives aimed at meeting goals.

Permittees, with support from the permitting authority, would then move to comprehensive scientific and technically based watershed analysis as a foundation for targeting solutions. The most effective solutions are expected to lie in isolating, to the extent possible, receiving waterbodies from exposure to those impact sources. In particular, low-impact design methods, termed Aquatic Resources Conservation Design in this report, should be employed to the full extent feasible and backed by conventional SCMs when necessary. This report also outlines a monitoring program structured to assess progress toward meeting objectives and the overlying goals, diagnosing reasons for any lack of progress, and determining compliance by dischargers. The new concept further includes market-based trading of credits among dischargers to achieve overall compliance in the most efficient manner and adaptive management to program additional actions if monitoring demonstrates failure to achieve objectives.

Integration of the three permitting types, such that construction and industrial sites come under the jurisdiction of their associated municipalities, would greatly improve many deficient aspects of the stormwater program. Federal and state NPDES permitting authorities do not presently have, and can never reasonably expect to have, sufficient personnel to inspect and enforce stormwater regulations on more than 100,000 discrete point source facilities discharging stormwater. A better structure would be one where the NPDES permitting authority empowers the MS4 permittees to act as the first tier of entities exercising control on stormwater discharges to the MS4 to protect water quality. The National Pretreatment Program, EPA's successful treatment program for municipal and industrial wastewater sources, could serve as a model for integration.

Short of adopting watershed-based permitting or integration, a variety of other smallerscale changes to the EPA stormwater program could be made now, as outlined below.

EPA should issue guidance for MS4, MSGP, and CGP permittees on what constitutes a design storm for water quality purposes. Precipitation events occur across a spectrum from small, more frequent storms to larger and more extreme storms, with the latter being a more typical focus of guidance manuals to date. Permittees need guidance from regional EPA offices on what water quality considerations to design SCMs for beyond issues such as safety of human life and property. In creating the guidance there should be a good faith effort to integrate water quality requirements with existing stormwater quantity requirements.

EPA should issue guidance for MS4 permittees on methods to identify high-risk industrial facilities for program prioritization such as inspections. Two visual methods for establishing rankings that have been field tested are provided in the chapter. Some of these high-risk industrial facilities and construction sites may be better covered by individual NPDES stormwater permits rather than the MSGP or the CGP, and if so would fall directly under the permitting authority and not be part of MS4 integration.

EPA should support the compilation and collection of quality *industrial* stormwater effluent data and SCM effluent quality data in a national database. This database can then serve as a source for the agency to develop technology-based effluent guidelines for stormwater discharges from industrial sectors and high-risk facilities.

EPA should develop numerical expressions to represent the MS4 standard of Maximum Extent Practicable. This could involve establishing municipal action levels based on expected outfall pollutant concentrations from the National Stormwater Quality Database, developing site-based runoff and pollutant load limits, and setting turbidity limits for construction sites. Such numerical expressions would create improved accountability, bring about consistency, and result in implementation actions that will lead to measurable reductions in stormwater pollutants in MS4 discharges.

Communities should use an urban stream classification system, such as a regionally adapted version of the Impervious Cover Model, to establish realistic water quality and biodiversity goals for individual classes of subwatersheds. The goals for water and habitat quality should become less stringent as impervious cover increases within the subwatershed. This should not become an excuse to work less diligently to improve the most degraded waterways—only to recognize that equivalent, or even greater, efforts to improve water quality conditions will achieve progressively less ambitious results in more highly urbanized watersheds. This approach would provide stormwater managers with more specific, measurable, and attainable implementation strategies than the one-size-fits-all approach that is promoted in current wet weather management regulations.

Better monitoring of MS4s to determine outcomes is needed. Only a small fraction of MS4 communities have provided measurable outcomes with regard to aggregate flow and pollutant reduction achieved by their municipal stormwater programs. A framework and methods to evaluate program effectiveness for each of the six minimum management measures have been outlined by CASQA (2007) and should be adopted. In addition, the lack of monitoring requirements in the Phase II stormwater program makes it virtually impossible to measure or track actual pollutant load or runoff volume reductions achieved. It is recommended that both Phase I and II MS4s shift to a more collaborative monitoring paradigm to link management efforts to receiving water quality.

Watershed-based permitting will require additional resources and regulatory program support. Such an approach shifts more attention to ambient outcomes as well as expanded permitting coverage. Additional resources for program implementation could come from shifting existing programmatic resources. For example, some state permitting resources may be shifted away from existing point source programs toward stormwater permitting. Strategic planning and prioritization could shift the distribution of federal and state grant and loan programs to encourage and support more watershed-based stormwater permitting programs. However, securing new levels of public funds will likely be required. All levels of government must recognize that additional resources may be required from citizens and businesses (in the form of taxes, fees, etc.) in order to operate a more comprehensive and effective stormwater permitting program.